Page 120 - IJOCTA-15-1
P. 120

D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)




              E∥(Φy)(ς) − (Φ¯y)(ς)∥ p                               R 4 = E 
 X    T α (ς − ς k )

                      n                                                      0<ς k <ς
                                                    p
                              p
                                      p
                                         p
              ≤ 3 p−1  2 p−1 M (1 + M ) l + 2 p−1 M ς p                    2             2          
 p
                             g
                                                   ς
                                     σ 1
                                                                          k              k
                                                                       × [I (y ς k  + z ς k  ) − I (¯y ς k  + z ς k )]
                    p       p   p    p−1   p ˜   p  p  p o
                × L (1 + M ) l + 2       M C p ς 2 L l                               ∞     p
                    f       σ 2            ς        G                      p−1  p p  X    2  q  X     2
                                                                       ≤ 2    M l        L k         L k
                                                                                ς
                × sup E∥y(ϑ) − ¯y(ϑ)∥  p                                                      0<ς k <ς
                   ϑ∈[0,ς 1 ]                                                        k=1        p
                                                                            sup
                                          p
              := Θ 1 sup E∥y(ϑ) − ¯y(ϑ)∥ ,                             ×  ϑ∈(ς k ,ς k+1 ] E∥y(ϑ) − ¯y(ϑ)∥ .
                     ϑ∈[0,ς 1 ]
                                                              These together with (5), we obtain
                               n
                                                 p
                                                      p
                                                   p
            where Θ 1 := 6 p−1 p  p       p  )+M ς ς L (1+
                             l
                                                      f
                                M g (1+M σ 1
               p      p  ˜  p   p  o                           E∥(Φy)(ς) − (Φ¯y)(ς)∥ p
            M σ 2 ) + M ς C p ς 2 L G  .
                                                                       n                                   p
                                                                               p
                                                                                                     p
                                                                                                       p
                                                                                           p
                                                                                       p
                                                                ≤ 5 p−1  2 p−1 M (1 + M ) l + 2 p−1 M ς L  f
                                                                               g
                                                                                                     ς
                                                                                      σ 1
                                                                                                p
                                                                                                   p
            Case (ii): For t ∈ (ς k , ς k+1 ], k = 1, m;          × (1 + M ) l + 2 p−1  M C p ς 2 L l p
                                                                               p
                                                                                          p ˜
                                                                           p
                                                                           σ 2           ς         G
            E∥(Φy)(ς) − (Φ¯y)(ς)∥ p                                            ∞     p
                                                                               X       q  X
                                                                          p p
                                                                  + 2 p−1 M l      L 1         L 1
                   n  
           ϑ Z                                     ϑ         k           k
             ≤ 5 p−1  E g(ς, y ς + z ς ,  σ 1 (ϑ, τ, y τ + z τ )dτ)            k=1      0<ς k <ς

                                                                               ∞     p
                                  0                                  p−1  p p  X    2  q  X     2  o
                                                                  + 2   M l        L k         L k
                                                                          ς
                          ϑ Z
                                            
 p                                k=1      0<ς k <ς
             − g(ς, ¯y ς + z ς ,  σ 1 (ϑ, τ, ¯y τ + z τ )dτ)
                                                                  ×   sup    E∥y(ϑ) − ¯y(ϑ)∥ p
                         0
                                                                    ϑ∈(ς k ,ς k+1 ]
                
  ς Z                  ϑ Z                                                  p
                                                                := Θ 2   sup   E∥y(ϑ) − ¯y(ϑ)∥ ,
                    T α (ς − ϑ) f(ϑ, y ϑ + z ϑ ,  σ 2 (ϑ, τ, y τ + z τ )dτ)

                                                                      ϑ∈(ς k ,ς k+1 ]
             + E
                  0                      0
                                                              where
                           ϑ Z
                                                p
             − f(ϑ, ¯y ϑ + z ϑ ,  σ 2 (ϑ, τ, ¯y τ + z τ )dτ) dϑ∥
                                                                         n
                                                                                             p
                                                                                         p
                                                                                 p
                                                                                                       p
                          0                                    Θ 2 := 5 p−1  2 p−1 M (1 + M ) l + 2 p−1 M ς p
                                                                                                       ς
                                                                                 g
                
  ς Z                                                                   σ 1         p
                                                                        p                               p
                    T α (ς − ϑ)[G(ς, ϑ, y ϑ + z ϑ )                 × L (1 + M ) l + 2      M C p ς 2 L l
                
                                                               p   p   p−1    p ˜         p
                                                                        f       σ 2                     G
             + E
                                                                             ς
                  0                                                              ∞      p
                                                                                  X      q  X
                                                                             p p
             − G(ς, ϑ, ¯y ϑ + z ϑ )]dw(ϑ)∥ p                        + 2 p−1 M l      L 1         L 1
                                                                             ϑ         k          k
                
 X              1             1         
 p                      k=1      0<ς k <ς
             + E 
                                     )]
                                              k
                                 k    + z ς k  ) − I (¯y ς k  + z ς k
                       S α (ς − ς k )[I (y ς k
                  0<ς k <ς                                             p−1   p p  ∞   2  p q  X  2 o
                                                                                  X
                                                                    + 2   M l        L           L   .
                                                           o
                
 X                                      
 p                 ς         k          k
                                 2            2
             + E 
     T α (ς − ς k )[I (y ς k  + z ς k  ) − I (¯y ς k  + z ς k )] 
  .
                                 k            k                                   k=1      0<ς k <ς
                  0<ς k <ς
                                                              Now, we take Θ = max{Θ 1 , Θ 2 } s.t
                                                                                 ς∈J
            Since other estimates are similar to that of as in
            ς ∈ [0, ς 1 ], it is enough to examine R 4 and R 5 . By               p                        p
                                                              E∥(Φy)(ς)−(Φ¯y)(ς)∥ ≤ Θ max E∥y(ϑ)−¯y(ϑ)∥ .
            (H 1 ) and (H 6 ), we estimate                                               ϑ∈J
                                                              By Lemma 3, the operator Φ has a unique fixed
                   
 X                                     
 p point on H.
                                    1            1
            R 4 = E 
     S α (ς − ς k )[I (y ς k  + z ς k  ) − I (¯y ς k  + z ς k )]
                                    k            k
                     0<ς k <ς
                      ∞     p
                    p  X   1  q  X   1          p
               ≤ M       L                     ∥
                                     k
                    ϑ      k        L E∥y ς k  − ¯y ς k
                      k=1     0<ς k <ς
                            ∞    p  X
                            X
                        p p
               ≤ 2 p−1 M l     L 1  q    L 1                  4.1. Exponential stability
                       ϑ        k          k
                            k=1     0<ς k <ς
                                      p
               ×   sup   E∥y(ϑ) − ¯y(ϑ)∥ .                    In this section, in order to evaluate the exponen-
                 ϑ∈(ς k ,ς k+1 ]                              tial stability for the mild solution of (1), addi-
                                                              tional assumption is imposed as follows:
            Similarly,
                                                           114
   115   116   117   118   119   120   121   122   123   124   125