Page 117 - IJOCTA-15-1
P. 117

Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay . . .



                        ς                                          ∗        p−1 p    p       p         p−1   p
                                                                                     ϑ
                       Z                                          b        4  l [b + M (E∥φ(0)∥ + L p )] + 4  ∥z 0 ∥
                                                              lim   = lim
                                                       p
              I 5 = E∥   T α (ς − ϑ)g(ϑ, τ, y τ + z τ )dw(τ)∥  b→∞ b   b→∞                  b
                                                                    = 4 p−1 p
                                                                          l .
                       0
                       ς
                      Z
                 ≤ E    ∥T α (ς − ϑ)g(ϑ, τ, y τ + z τ )dw(τ)∥ p
                      0                                       Thus,
                            ς
                           Z                       2  i p
                          h
                      p ˜                        p  p   2
                 ≤ M C p       E∥g(ϑ, τ, y τ + z τ )∥  dϑ
                      ς
                           0
                            p
                      p ˜
                 ≤ M C p ς 2 ¯     ∗                                 p−1  n         p       p p  p        p
                              L G b .
                                                                          ¯ p
                      ς
                                                              1 ≤ 24     M (1 + M ) + M ς [L (1 + M )]
                                                                            g       σ 1     ς    f       σ 2
            By (H 1 ), (H 7 ) and Lemma 2, one can obtain                   p    o
                                                                      p ˜
                                                                  + M C p ς 2 ¯    p
                                                                              L G l ,
                                                                      ς
                             ς
                            Z
                                              H
                  I 6 = E∥    T α (ς − ϑ)σ(ϑ)dB (ϑ)∥ p
                                              Q
                            0                                 which contradicts (H 8 ). Hence the claim.
                           ς
                          Z
                                              H
                     ≤ E    ∥T α (ς − ϑ)σ(ϑ)dB (ϑ)∥ p
                                              Q
                          0
                                      ς
                                                              Case (ii): For ς ∈ (ς k , ς k+1 ], k = 1, m. For this
                                     Z
                                               p
                          p
                     ≤ M CHς    pH−1   E∥σ(ϑ)∥ dϑ             case, it is enough to find I 7 , I 8 , since other esti-
                          ς
                                     0                        mates are similar to that of as in case (i). Now,
                          p
                     ≤ M CHς    pH−1 ˆ                        by (H 1 ), (H 6 ) we get
                                     L.
                          ς
            Combining estimates I 1 − I 6 , we have
                     n       p                                           
                            
 p
                                ¯
                                           ¯
                                        p
            b ≤ 6 p−1  2 p−1 M M g [E∥φ∥ + L p ]                         
  X               1
                             ϑ
                                                                                           k     + z ς k  )
                                                                                 S α (ς − ς k )I (y ς k
                                                                  I 7 = E
                                p
                                        p
                                             ¯ p
                                                        p
                         p
                + 2 p−1 M [E∥y 1 ∥ + E∥η∥ ] + M (1 + M ) b  ∗              0<ς k <ς
                        ς
                                               g
                                                       σ 1
                                                                         X                 1           p
                                                   p
                         p
                + M ς [L (1 + M )] b + M C p ς 2 ¯       ∗           ≤        E∥S α (ς − ς k )I (y ς k  + z ς k )∥
                                       ∗
                                             p ˜
                                  p
                    p p
                                                                                           k
                                                     L G b
                    ς
                                             ς
                         f
                                  σ 2
                                                                        0<ς k <ς
                                o
                    p
                + M CHς   pH−1 ˆ                                            ∞      p
                               L
                    ς                                                     p  X      q  X
                                                                                            ¯ 1 ∗
                                                                                ¯ 1
                                                                     ≤ M        L           L b .
                     n       p                                            ϑ       k          k
                                           ¯
                                        p
                                ¯
              ≤ 6 p−1  2 p−1 M M g [E∥φ∥ + L p ] + 2 p−1 M p                 k=1      0<ς k <ς
                             ϑ                         ς
                        p
                                 p
                                                 p
                                      ¯ p
                × [E∥y 1 ∥ + E∥η∥ ] + [M (1 + M )
                                        g
                                                σ 1
                                                p
                         p
                                  p
                                          p ˜
                    p p
                + M ς [L (1 + M )] + M C p ς 2 ¯       ∗
                                                  L G ]b
                    ς
                                          ς
                         f
                                  σ 2
                                                              Similarly,
                                o
                    p
                + M CHς   pH−1 ˆ                        (3)
                               L
                    ς
              := b 0 ,
            where                                                        
                            
 p
                                                                            X
                                                                                            2

                                                                                           k
                                                                                 T α (ς − ς k )I (y ς k  + z ς k
                                                                  I 8 = E
                           )
                                                                           0<ς k <ς
                      n
                              p
                                            ¯
                                 ¯
                                         p
            b 0 = 6 p−1  2 p−1 M M g [E∥φ∥ + L p ]                       X
                                                                                           2
                              ϑ                                      ≤        E∥T α (ς − ς k )I (y ς k  + z ς k )∥ p
                                                                                           k
                                         p
                                 p
                          p
                                               ¯ p
                                                         p
                 + 2 p−1 M [E∥y 1 ∥ + E∥η∥ ] + [M (1 + M )              0<ς k <ς
                                                g
                         ς
                                                         σ 1
                                                 p
                                           p ˜
                          p
                 + M ς [L (1 + M )] + M C p ς 2 ¯       ∗                 p  ∞     p q  X
                                   p
                     p p
                                                   L G ]b
                                                                                ¯ 2
                                                                             X
                                                                                            ¯ 2 ∗
                     ς    f        σ 2     ς                         ≤ M  ς     L k         L b .
                                                                                             k
                                                                             k=1      0<ς k <ς
                                            o
                                p
                                           L .
                            + M CHς   pH−1 ˆ
                                ς
            Dividing both sides of (3) by b and letting b → ∞,
            we have                                           From these together with,
                                                           111
   112   113   114   115   116   117   118   119   120   121   122