Page 114 - IJOCTA-15-1
P. 114

D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)

                   
                                             ), ς ∈ (−∞, 0];
                    φ(ς) + ˜p(x ς 1  , x ς 2  , . . . , x ς n
                   
                   
                                               )                  ς Z
                    S α (ς)[φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n
                                                                                          p             p
                   
                                               ), 0)]          E∥  [σ i (ς, ϑ, x) − σ i (ς, ϑ, y)]dϑ∥ ≤ M σ i E∥x − y∥ ;
                    +g(0, φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n                                        B
                                              ς
                   
                   
                                             R                   0
                    +T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ)
                   
                   
                                                                                ς Z
                                              0
                   
                   
                         ς                   ϑ                                    σ i (ς, 0, 0)dϑ = 0.
                   
                   
                       R                   R
                    + T α (ς − ϑ) f(ϑ, x ϑ ,  σ 2 (ϑ, τ, x τ )dτ) dϑ           0
                   
                   
                   
                       0                   0
                   
                        ς                                      (H 3 ) The nonlinear continuous function f :
                       R
                    + T α (ς − ϑ)G(ς, τ, x τ )dw(τ)
                   
                   
                                                                    J × B × H → H and ∃ L f > 0 ∋ ∀ ς ∈
                       0
                   
                        ς                                           J, x 1 , x 2 ∈ B, y 1 , y 2 ∈ L p (Ω, H),
                   
                        R
                                          H
                    + T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ]
                   
                   
                                         Q
                       0
                                                                                        p                p
                    .                                          E∥f(ς, x 1 , y 1 ) − f(ς, x 2 , y 2 )∥ ≤ L f (E∥x 1 − x 2 ∥ B
                   
                    .
                   
                    .
                                                                             p
                                               )                  +E∥y 1 − y 2 ∥ ); f(ς, 0, 0) = 0.
                                                                              B
            x(ς) =    S α (ς)[φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n
                                                ), 0)]
                    +g(0, φ + ˜p(x ς 1  , x ς 2  , . . . , x ς n
                   
                                              ς
                   
                   
                                              R
                    +T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ)  (H 4 ) The nonlinear function G : J × J × B →
                   
                   
                                                                      0
                                              0
                                                                    L (K, H) is continuous and there exist
                                                                      Q
                   
                         ς                   ϑ
                                                                         ¯
                   
                       R                   R                        L G , L G > 0 ∋ ∀ ς, ϑ ∈ J and x, y ∈ B,
                    + T α (ς − ϑ) f(ϑ, x ϑ ,  σ 2 (ϑ, τ, x τ )dτ) dϑ
                   
                   
                                                                                      −   G(ς, ϑ, y)∥ p   ≤
                       0                   0                         (i) E∥G(ς, ϑ, x)
                   
                        ς                                                             p
                   
                        R
                    + T α (ς − ϑ)G(ς, τ, x τ )dw(τ)
                                                                         L G (E∥x − y∥ ).
                   
                                                                                     p   ¯        p
                        0
                                                                     (ii) E∥G(ς, ϑ, x)∥ ≤ L G E∥x∥ .
                   
                        ς
                   
                        R
                    + T α (ς − ϑ)σ(ϑ)dB (ϑ)
                                         H
                   
                                          Q                                             n
                                                               (H 5 ) The function ˜p : B
                                                                                         → B is continuous
                       0
                         P              1                                              ¯
                    +                        )                      and there exist L ˜p , L ˜p > 0 ∋ ∀ ς ∈ J and
                   
                              S α (ς − ς k )I (x ς k
                                        k
                        0<ς k <ς
                   
                   
                                                                    x, y ∈ B,
                          P              2
                    +        T α (ς − ς k )I (x ς k ), ∀ ς ∈ (ς k , ς k+1 ],                                  p
                   
                   
                                        k                            (i) E∥˜p(x ς 1  , . . . , x ς n  )(ς)−˜p(y ς 1  , . . . , y ς n )(ς)∥ ≤
                       0<ς k <ς
                                                                                        p                p
                   
                                            k = 1, m,
                                                                         L ˜p (E∥x ς 1  −y ς 1  ∥ , . . . , E∥x ς n  −y ς n ∥ ).
                                                                                             )(ς)∥ p       ≤
                                                                      (ii) E∥˜p(x ς 1  , x ς 2  , . . . , x ς n
                                                                          ¯               ∥ .
                                                                                           p
                                 ς                                        L ˜p E∥x ς 1  , . . . , x ς n
                                R
            where η =  d  [g(ς, x ς , σ 1 (ς, τ, x τ )dτ)] ς=0 .
                       dς                                                                     i
                                0                               (H 6 ) The impulsive functions I : B → H, i =
                                                                                              k
            In order to prove the existence result, we demon-        1, 2, k = 1, m s.t x, y ∈ B and there exist
                                                                       i ¯ i
            strate the following primary hypotheses hold:            L , L > 0,
                                                                       k  k
                                                                             i
                                                                                       i
                                                                                                     i
                                                                      (i) E∥I (ς, x) − I (ς, y)∥ p  ≤ L [E∥x −
                                                                             k
                                                                                       k
                                                                                                     k
              (H 1 ) A is the infinitesimal generator of a                y∥ ]
                                                                            p
                    strongly continuous cosine family of              (ii) E∥I (ς, x)∥ ≤ L [E∥x∥ ]
                                                                                                p
                                                                             i
                                                                                    p
                                                                                        ¯ i
                    bounded linear operators {S α (ς)} ς≥0  and              k            k
                    {T α (ς)} ς≥0  on H, there exist +ve con-   (H 7 ) The function σ : J → L (K, H) satisfies
                                                                                            0
                                                                                            Q
                    stants M ϑ , M ς s.t ∀ ς, ϑ ∈ J
                                                                                ς
                                                                               Z
                                                                             
          
 p  ˆ
                                                                            E 
  σ(ϑ)dϑ 
  ≤ L.
                           p
                                            p
                    ∥S α (ς)∥ ≤ M ϑ ,  ∥T α (ς)∥ ≤ M ς .
                                                                               0
              (H 2 ) The function g : J×B×H → H is continu-            p−1  n  p        p        p p  p
                                                                             ¯
                    ous on J×J and there exist +ve constants    (H 8 ) 32   M g (1 + M σ 1 ) + M ς ς [L f  (1 +
                        ¯
                    M g , M g s.t ∀ ς ∈ J, x 1 , x 2 ∈ B, y 1 , y 2 ∈   p  )] + M ς C p ς 2 ¯   p  ∞  1  p q
                                                                                      p
                                                                                p
                                                                                  ˜
                                                                                                   P
                    L p (Ω, H),                                      M σ 2              L G + M ϑ     L k
                                                                                                  k=1
                                                                           ∞      p o
                                                                         p  P    2  q  p
                                        p                            +M ς      L k    l < 1.
              E∥g(ς, x 1 , y 1 ) − g(ς, x 2 , y 2 )∥ ≤ M g                  k=1
                             p             p
               × (E∥x 1 − x 2 ∥ + E∥y 1 − y 2 ∥ )
                             B
                                           B
                                          p
                               ¯
                          p
              E∥g(ς, x, y)∥ ≤ M g E∥x − y∥ ; g(ς, 0, 0) = 0.  4. Existence result
                                          B
                    (ii) For each (ς, ϑ) ∈ J × J, the func-   In this section, we present the existence result for
                        tion σ i : J × J × B → H, i = 1, 2    mild solution of Cauchy problem (1). To develop
                        is continuous and ∃   M σ i  > 0 s.t  our results, first we need to derive the following
                        ∀ ς, ϑ ∈ J, x, y ∈ B,                 existence result of mild solution.
                                                           108
   109   110   111   112   113   114   115   116   117   118   119