Page 114 - IJOCTA-15-1
P. 114
D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)
), ς ∈ (−∞, 0];
φ(ς) + ˜p(x ς 1 , x ς 2 , . . . , x ς n
) ς Z
S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
p p
), 0)] E∥ [σ i (ς, ϑ, x) − σ i (ς, ϑ, y)]dϑ∥ ≤ M σ i E∥x − y∥ ;
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n B
ς
R 0
+T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ)
ς Z
0
ς ϑ σ i (ς, 0, 0)dϑ = 0.
R R
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ 0
0 0
ς (H 3 ) The nonlinear continuous function f :
R
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ)
J × B × H → H and ∃ L f > 0 ∋ ∀ ς ∈
0
ς J, x 1 , x 2 ∈ B, y 1 , y 2 ∈ L p (Ω, H),
R
H
+ T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ]
Q
0
p p
. E∥f(ς, x 1 , y 1 ) − f(ς, x 2 , y 2 )∥ ≤ L f (E∥x 1 − x 2 ∥ B
.
.
p
) +E∥y 1 − y 2 ∥ ); f(ς, 0, 0) = 0.
B
x(ς) = S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
), 0)]
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
ς
R
+T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ) (H 4 ) The nonlinear function G : J × J × B →
0
0
L (K, H) is continuous and there exist
Q
ς ϑ
¯
R R L G , L G > 0 ∋ ∀ ς, ϑ ∈ J and x, y ∈ B,
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
− G(ς, ϑ, y)∥ p ≤
0 0 (i) E∥G(ς, ϑ, x)
ς p
R
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ)
L G (E∥x − y∥ ).
p ¯ p
0
(ii) E∥G(ς, ϑ, x)∥ ≤ L G E∥x∥ .
ς
R
+ T α (ς − ϑ)σ(ϑ)dB (ϑ)
H
Q n
(H 5 ) The function ˜p : B
→ B is continuous
0
P 1 ¯
+ ) and there exist L ˜p , L ˜p > 0 ∋ ∀ ς ∈ J and
S α (ς − ς k )I (x ς k
k
0<ς k <ς
x, y ∈ B,
P 2
+ T α (ς − ς k )I (x ς k ), ∀ ς ∈ (ς k , ς k+1 ], p
k (i) E∥˜p(x ς 1 , . . . , x ς n )(ς)−˜p(y ς 1 , . . . , y ς n )(ς)∥ ≤
0<ς k <ς
p p
k = 1, m,
L ˜p (E∥x ς 1 −y ς 1 ∥ , . . . , E∥x ς n −y ς n ∥ ).
)(ς)∥ p ≤
(ii) E∥˜p(x ς 1 , x ς 2 , . . . , x ς n
¯ ∥ .
p
ς L ˜p E∥x ς 1 , . . . , x ς n
R
where η = d [g(ς, x ς , σ 1 (ς, τ, x τ )dτ)] ς=0 .
dς i
0 (H 6 ) The impulsive functions I : B → H, i =
k
In order to prove the existence result, we demon- 1, 2, k = 1, m s.t x, y ∈ B and there exist
i ¯ i
strate the following primary hypotheses hold: L , L > 0,
k k
i
i
i
(i) E∥I (ς, x) − I (ς, y)∥ p ≤ L [E∥x −
k
k
k
(H 1 ) A is the infinitesimal generator of a y∥ ]
p
strongly continuous cosine family of (ii) E∥I (ς, x)∥ ≤ L [E∥x∥ ]
p
i
p
¯ i
bounded linear operators {S α (ς)} ς≥0 and k k
{T α (ς)} ς≥0 on H, there exist +ve con- (H 7 ) The function σ : J → L (K, H) satisfies
0
Q
stants M ϑ , M ς s.t ∀ ς, ϑ ∈ J
ς
Z
p ˆ
E
σ(ϑ)dϑ
≤ L.
p
p
∥S α (ς)∥ ≤ M ϑ , ∥T α (ς)∥ ≤ M ς .
0
(H 2 ) The function g : J×B×H → H is continu- p−1 n p p p p p
¯
ous on J×J and there exist +ve constants (H 8 ) 32 M g (1 + M σ 1 ) + M ς ς [L f (1 +
¯
M g , M g s.t ∀ ς ∈ J, x 1 , x 2 ∈ B, y 1 , y 2 ∈ p )] + M ς C p ς 2 ¯ p ∞ 1 p q
p
p
˜
P
L p (Ω, H), M σ 2 L G + M ϑ L k
k=1
∞ p o
p P 2 q p
p +M ς L k l < 1.
E∥g(ς, x 1 , y 1 ) − g(ς, x 2 , y 2 )∥ ≤ M g k=1
p p
× (E∥x 1 − x 2 ∥ + E∥y 1 − y 2 ∥ )
B
B
p
¯
p
E∥g(ς, x, y)∥ ≤ M g E∥x − y∥ ; g(ς, 0, 0) = 0. 4. Existence result
B
(ii) For each (ς, ϑ) ∈ J × J, the func- In this section, we present the existence result for
tion σ i : J × J × B → H, i = 1, 2 mild solution of Cauchy problem (1). To develop
is continuous and ∃ M σ i > 0 s.t our results, first we need to derive the following
∀ ς, ϑ ∈ J, x, y ∈ B, existence result of mild solution.
108

