Page 118 - IJOCTA-15-1
P. 118

D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)

                                                              Take b = max{b 0 , b 1 }, for each y ∈ B b . Hence the
                                                                        ς∈J
                     n       p
                                           ¯
                                ¯
                                        p
            b ≤ 8 p−1  2 p−1 M M g [E∥φ∥ + L p ]              claim.
                             ϑ
                         p
                                             ¯ p
                                p
                                                        p
                                        p
                + 2 p−1 M [E∥y 1 ∥ + E∥η∥ ] + M (1 + M ) b  ∗
                        ς
                                               g
                                                       σ 1
                                                   p
                         p
                    p p
                                       ∗
                + M ς [L (1 + M )] b + M C p ς 2 ¯       ∗
                                             p ˜
                                  p
                                                     L G b
                    ς
                                             ς
                         f
                                  σ 2
                                       ∞      p  X
                                                       ¯ 1 ∗
                                        X
                                            ¯ 1
                    p
                               L + M
                + M CHς   pH−1 ˆ     ϑ p   L k  q      L b    Step 2: The operator Φ is a contraction mapping.
                                                         k
                    ς
                                                                                            0
                                        k=1      0<ς k <ς     Case (i): Let ς ∈ J and y, ¯y ∈ B we have
                                                                                            T
                      ∞      p  X        o
                           ¯ 2
                                       ¯ 2 ∗
                       X
                + M p      L   q      L b
                    ς       k           k
                       k=1      0<ς k <ς
                     n       p
                                           ¯
                                ¯
                                        p
              ≤ 8 p−1  2 p−1 M M g [E∥φ∥ + L p ]
                             ϑ
                                                              (Φy)(ς)
                                             h
                                        p
                         p
                                              ¯ p
                                                         p
                                p
                + 2 p−1 M [E∥y 1 ∥ + E∥η∥ ] + M (1 + M )
                        ς                       g       σ 1                                 ϑ
                                                                                           Z
                                                p
                         p
                                          p ˜
                + M ς [L (1 + M )] + M C p ς 2 ¯               = T α (ς)[y 1 + η] − g(ς, y ς + z ς ,  σ 1 (ϑ, τ, y τ + z τ )dτ)
                                  p
                    p p
                                                  L G
                    ς
                                          ς
                         f
                                  σ 2
                      ∞      p  X                                                        0
                       X
                                       ¯ 1
                           ¯ 1
                + M p      L   q      L                             ς                        ϑ
                    ϑ       k           k                          Z                       Z
                       k=1      0<ς k <ς                         +   T α (ς − ϑ) f(ϑ, y ϑ + z ϑ ,  σ 2 (ϑ, τ,
                      ∞      p
                       X       q  X     2  i  ∗  p    pH−1 ˆ o     0                        0
                           ¯ 2
                    p
                + M ς      L k        L b + M CHς          L
                                        k
                                                ς
                       k=1      0<ς k <ς                          y τ + z τ )dτ) dϑ
                                                        (4)         ς
                                                                   Z
              := b 1 ,                                           +   T α (ς − ϑ)G(ς, ϑ, y ϑ + z ϑ )dw(ϑ)
                                                                   0
            where                                                   ς
                                                                   Z
                                                                                      H
                                                                 +   T α (ς − ϑ)σ(ϑ)dB (ϑ)
                                                                                      Q
                                                                   0
                      n       p
                                            ¯
                                         p
                                 ¯
            b 1 = 8 p−1  2 p−1 M M g [E∥φ∥ + L p ]
                              ϑ
                                             h
                          p
                                               ¯ p
                                         p
                                                          p
                                 p
                 + 2 p−1 M [E∥y 1 ∥ + E∥η∥ ] + M (1 + M )
                         ς
                                                 g
                                                         σ 1
                                                 p
                     p p
                                           p ˜
                                   p
                 + M ς [L (1 + M )] + M C p ς 2 ¯
                          p
                     ς    f        σ 2     ς       L G        and
                       ∞      p  X
                        X
                            ¯ 1
                                       ¯ 1
                 + M p      L   q      L
                     ϑ       k           k
                        k=1      0<ς k <ς
                       ∞      p
                        X       q  X     2  i  ∗
                     p
                            ¯ 2
                 + M ς      L k        L b                          (Φ¯y)(ς)
                                         k
                        k=1      0<ς k <ς
                                 o                                   = T α (ς)[¯y 1 + η]
                     p
                 + M CHς   pH−1 ˆ
                                L .
                     ς
                                                                                   ϑ
                                                                                  Z
                                                                    − g(ς, ¯y ς + z ς ,  σ 1 (ϑ, τ, ¯y τ + z τ )dτ)
            Dividing both side of (4) by b and letting as
                                                                                  0
            b → ∞, we get
                                                                  ς                        ϑ
                                                                 Z                        Z

                                                              +    T α (ς − ϑ) f(ϑ, ¯y ϑ + z ϑ ,  σ 2 (ϑ, τ, ¯y τ + z τ )dτ) dϑ
                   n
                                            p
                                                     p
                      ¯ p
                                       p p
                                p
              32 p−1  M (1 + M ) + M ς [L (1 + M )]              0                        0
                                       ς
                       g
                                            f
                                σ 1
                                                     σ 2
                                                                  ς
                                       ∞      p                Z
                           p
                     p ˜
                 + M C p ς 2 ¯       p  X  L 1  q  X   L 1    +    T α (ς − ϑ)G(ς, ϑ, ¯y ϑ + z ϑ )dw(ϑ)
                             L G + M
                     ς               ϑ       k          k
                                        k=1      0<ς k <ς        0
                       ∞      p         o                      Z ς
                     p  X    2  q  X     2  p
                 + M       L           L   l ≥ 1.                                  H
                     ϑ       k           k                    +    T α (ς − ϑ)σ(ϑ)dB (ϑ),
                                                                                   Q
                        k=1      0<ς k <ς
                                                                 0
            This contradicts with (H 8 ).                     hence, we have
                                                           112
   113   114   115   116   117   118   119   120   121   122   123