Page 122 - IJOCTA-15-1
P. 122
D. Kasinathan et.al. / IJOCTA, Vol.15, No.1, pp.103-122 (2025)
x(ς)
) )
S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n B 1 = E∥S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
), 0)] p
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n ), 0)]∥
ς
+ g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
R p
+T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ) )
≤ ∥S α (ς)∥ [E∥φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
0
p
), 0)∥ ]
ς ϑ + g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
R R
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ p−1 p −pβ 1 ς p p
≤ 3 a e )∥
0 0 1 [E∥φ∥ + E∥˜p(x ς 1 , x ς 2 , . . . , x ς n
ς
p
R ), 0)∥ ]
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ) + E∥g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
0 p
p−1 −pβ 1 ς p ¯ ∥ p
ς ≤ 3 a e
1 [E∥φ∥ + L ˜p E∥x ς 1 , x ς 2 , . . . , x ς n
R
+ T α (ς − ϑ)σ(ϑ)dB (ϑ), ς ∈ [0, ς 1 ] p−1 ¯ p
H
¯
Q + 2 M g (E∥φ∥ + L ˜p )]
0
. B 2 = E∥T α (ς)[x 1 + η]∥ p
.
.
)
p p
S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n ≤ ∥T α (ς)∥ [E∥x 1 + η∥ ]
= ), 0)]
+g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n p−1 p −pβ 2 ς p p
ς ≤ 2 a e [E∥x 1 ∥ + E∥η∥ ].
2
R
+T α (ς)[x 1 + η] − g(ς, x ς , σ 1 (ς, τ, x τ )dτ)
0
ς ϑ
R R
+ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
0 0
ς
R
+ T α (ς − ϑ)G(ς, τ, x τ )dw(τ) By (H 2 ), we get
0
ς
R
H
+ T α (ς − ϑ)σ(ϑ)dB (ϑ)
Q
0
P 1
+ ) ς
S α (ς − ς k )I (x ς k
k Z
0<ς k <ς
p
P 2 B 3 = E
g(ς, x ς ,
+ T α (ς − ς k )I (x ς k ), ∀ ς ∈ (ς k , ς k+1 ], σ 1 (ς, τ, x τ )dτ)
k
0<ς k <ς
0
k = 1, m. ς
Z
h i
p
¯ p
≤ M g E∥x ϑ ∥ + E∥ σ 1 (ς, τ, x τ )dτ∥ p
For ς ∈ [0, ς 1 ] 0
p
¯ p
p
≤ M (1 + M ) sup E∥x ϑ ∥ .
g
σ 1
ϑ∈[0,ς 1 ]
E∥x(ς)∥ p
n
≤ E∥S α (ς)[φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n ) Next, by (H 2 ) (ii), (H 3 ) and (H 9 ), we get the fol-
), 0)]∥ p lowing estimation:
+ g(0, φ + ˜p(x ς 1 , x ς 2 , . . . , x ς n
p
+ E∥T α (ς)[x 1 + η]∥ ∥ + E∥g(ς, x ς , ς Z σ 1 (ς, τ, x τ )dτ)∥ p
0
B 4
ς Z
ϑ Z
+ E∥ T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ∥ p Z ς Z ϑ
p
0 0 = E
T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
0 0
ς Z
+ E∥ T α (ς − ϑ)G(ς, τ, x τ )dw(τ)∥ p ς ϑ
Z Z
p
0
≤ E
T α (ς − ϑ) f(ϑ, x ϑ , σ 2 (ϑ, τ, x τ )dτ) dϑ
ς Z
o
H
+ E∥ T α (ς − ϑ)σ(ϑ)dB (ϑ)∥ p 0 0
Q
ς
Z
0 p 1−p p p −β 2 (ς−ϑ)
≤ a β [L (1 + M )] e
6 2 2 f σ 2
X
p−1
≤ 6 B i . 0
p
i=1 × sup E∥x ϑ ∥ dϑ.
(9)
ϑ∈[0,ς 1 ]
We estimate the terms on the R.H.S of the (9).
By (H 5 ), (H 9 ) we evaluate By Lemma 1 and assumptions (H 4 ), (H 9 ), we get
116

