Page 134 - IJOCTA-15-1
P. 134

R. Bagri, G. Sachdev, D. Agarwal / IJOCTA, Vol.15, No.1, pp.123-136 (2025)

                                                                             T
                                                                            τ β ζ κ (Π, ζ κ , µ) dν.
                Z                   Z
                    T
                                        T
                   λ θ(Λ, σ κ , b)dν −  λ θ(Π, ζ κ , b)dν ≧   Further, applying integration by parts,
                  Ω                  Ω
                 Z
                                        T
                    η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)λ θ ζ (Π, ζ κ , b)dν  Z    T  T              T
                  Ω                                               χ Ψ(Λ, ¯ a)+λ θ(Λ, σ κ , b)+τ β(Λ, σ κ , µ) dν
                                                               Ω
                                                                Z
               Z

                                                                                                T
                                                                     T
                                                                                 T
                                         T
             +    D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)λ θ ζ κ (Π, ζ κ , b)dν+  −  χ Ψ(Π, ¯ a)+λ θ(Π, ζ κ , b)+τ β(Π, ζ κ , µ) dν
                Ω                                                Ω

               Z
                                      T
                  ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ)λ θ ϱ (Π, ζ κ , b)dν  (16)                   T   (Π, ζ κ , b)
                                                                   ≧η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ
                Ω
            and                                                                           !
                                                                             T               t 1
                                                                          +τ β ζ κ (Π, ζ κ , µ)  dν
                                                                                             t 0
                 Z                 Z
                                       T
                     T
                    τ β(Λ, σ κ , µ)−  τ β(Π, ζ κ , µ)dν ≧       Z
                                                                                            T
                  Ω                 Ω                         −    D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)dν+
                 Z
                                                                 Ω
                                        T
                   η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)τ β ζ (Π, ζ κ , µ)dν
                                                                             T
                  Ω                                                        τ β ζ κ (Π, ζ κ , µ) dν+
               Z
                                         T
             +    D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)τ β ζ κ (Π, ζ κ , µ)dν+  Z               T
                Ω                                             +    D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)dν+
               Z                                                 Ω
                                      T
                 ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ)τ β ϱ (Π, ζ κ , µ)dν.  (17)     T    (Π, ζ κ , µ) dν
                                                                            τ β ζ κ
                Ω
            Adding inequalities (15), (16) and (17), we obtain  which on using boundary conditions of Definition
                                                              2, give
                                                               Z
            Z
                                                                                              T
                                                                               T
                                                                   T
                                                                χ Ψ(Λ, ¯ a)+λ θ(Λ, σ κ , b)+τ β(Λ, σ κ , µ)dν
                                            T
                  T
                              T
                χ Ψ(Λ, ¯ a)+λ θ(Λ, σ κ , b)+τ β(Λ, σ κ , µ) dν−
                                                                Ω
              Ω                                                 Z
            Z
                                                                  T           T             T
                  T
                                            T
                              T
                χ Ψ(Π, ¯ a)+λ θ(Π, ζ κ , b)+τ β(Π, ζ κ , µ) dν,  ≧  χ Ψ(Π, ¯ a)+λ θ(Π, ζ κ , b)+τ β(Π, ζ κ , µ)dν,
              Ω                                                  Ω
                   Z
                                                             a contradiction to inequality (14). Hence, the re-
                                            T
                 ≧    η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) χ Ψ ζ (Π, ¯ a)  sult is derived.
                     Ω

                      T
                                     T
                   +λ θ ζ (Π, ζ κ , b)+τ β ζ (Π, ζ κ , µ) dν  Pertinent Case : Consider the following bi-
                                                              objective multi-dimensional variational control
               Z

                                          T
             +   D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)dν+  problem with data uncertainty
                Ω                                                                                      !
                                                                              Z            Z

                            T
                           τ β ζ κ (Π, ζ κ , ¯µ) dν             (UVP1) min       Ψ 1 (Λ, a 1 ),  Ψ 2 (Λ, a 2 ) =
                                                                        (σ,ω)
                   Z                                                           Ω            Ω

                                           T
                 +   ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ) χ Ψ ϱ (Π, ¯ a)+         Z              Z            !
                    Ω                                                         2                   2
                                                                  min      (σ +a 1 ω)dν,  (a 2 −ω )dν
                                    T
                     T
                   λ θ ϱ (Π, ζ κ , b)+τ β ϱ (Π, ζ κ , µ) dν.       (σ,ω)  Ω               Ω
            Using (10) and (11), the above inequality implies                    subject to
            the following                                         θ(Λ, σ κ (t), b)=2b+σ−7≦0, b∈[1, 2]    (1∗)
                                                                                     −5ω =0, µ∈[0, 1]    (2∗)
                                                                 β(Λ, σ κ (t), µ)=µσ t 1
            Z
                                                                                 1           3
                  T
                                            T
                              T
                χ Ψ(Λ, ¯ a)+λ θ(Λ, σ κ , b)+τ β(Λ, σ κ , µ) dν            σ(0, 0)= , σ(1, 1)= ,          (3∗)
              Ω                                                                    2           2
                                                                          1
              Z                                                       h    i

                    T
                                              T
                                T
            −     χ Ψ(Π, ¯ a)+λ θ(Π, ζ κ , b)+τ β(Π, ζ κ , µ) dν,  a 1 ∈ 0,  2  , a 2 ∈[0, 3], [t 1 , t 2 ]∈[0, 0]×[1, 1].
               Ω
                                                              The robust counterpart to the variational control
               Z
                                          h
                                            T
             ≧    η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) D κ λ θ ζ κ (Π, ζ κ , b)+  problem (UVP1) is written as :
                Ω
                                                                                  Z
                                         !                                                   2
                                                                   (RUVP1) min       max (σ +a 1 ω)dν,
                                        i
                          T                                                (σ,ω)         1
                                                                                         2
                         τ β ζ κ (Π, ζ κ , µ)  dν+                                 Ω a 1 ∈[0, ]
                                                                                              !
                                                                           Z
               Z
                                                                                         2
                                          T
             +   D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)dν+     max (a 2 −ω )dν
                                                                            Ω  a 2 ∈[0,3]
                Ω
                                                           128
   129   130   131   132   133   134   135   136   137   138   139