Page 138 - IJOCTA-15-1
P. 138

R. Bagri, G. Sachdev, D. Agarwal / IJOCTA, Vol.15, No.1, pp.123-136 (2025)
                                                                   h                                   i
                                                                     T                  T       ¯
                   Z                 Z                                                      (Π,ζ κ (t), µ) =0,
                                                              −D κ λ θ ζ κ  (Π, ζ κ (t), b)+τ β ζ κ
                       T
                            ¯
                                         T
                                             ¯


                      ¯ χ Ψ Λ, ¯ a dν −  ¯ χ Ψ Π, ¯ a dν                                                 (23)
                    Ω                 Ω
                                                                      χ Ψ ϱ (Π, ¯ a)+λ θ ϱ (Π, ζ κ (t), b)+
                 Z                   Z                                  T           T
                    λ θ(Λ, ¯σ κ , b)dν −
                                        λ θ(Π, ζ κ , b)dν+
                +   ¯ T  ¯     ¯        ¯ T  ¯ ¯ ¯                         ¯ τ β ϱ (Π, ζ κ (t), µ)=0,    (24)
                                                                            T
                   Ω                  Ω
                 Z                   Z
                     T
                                         T
                                             ¯ ¯
                        ¯
                    ¯ τ β(Λ, ¯σ κ , ¯µ)dν −  ¯ τ β(Π, ζ κ , ¯µ)dν              T
                  Ω                   Ω                                      λ θ(Π, ζ κ , b)≧0,          (25)
                  Z
                                                                              T
                                                                           τ β(Π, ζ κ , µ)=0,          (26)
                            ¯
                                           T
                                 ¯
                                                 ¯
                >    η(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) ¯χ Ψ ζ Π, ¯ a +
                    Ω                                                       ζ(t 0 )=δ 0 , ζ(t 1 )=δ 1 ,  (27)
                     ¯ T   ¯ ¯ ¯      T   ¯ ¯                                λ≧0, χ>0, τ >0,             (28)
                     λ θ ζ (Π, ζ κ , b)+ ¯τ β ζ (Π, ζ κ , ¯µ)

                           ¯     ¯        ¯ T   ¯ ¯ ¯         for ¯a ∈A, b∈B, µ∈M .
                +D κ η(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) λ θ ζ κ (Π, ζ κ , b)

                             T    ¯ ¯
                          +¯τ β ζ κ (Π, ζ κ , ¯µ) dν          Denote T MW = {(ζ, ϱ, χ, λ, τ, ¯ a, b, µ) satisfying
                  Z
                                                            conditions (23)−(28)} as the set of feasible so-
                                 ¯
                           ¯
                                           T
                                                 ¯
                +    ξ(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) ¯χ Ψ ϱ Π, ¯ a +  lutions to (MWD).
                    Ω

                         ¯ ¯ ¯
                                        ¯ ¯
                                    T
                   ¯ T
                   λ θ ϱ (Π, ζ κ , b)+ ¯τ β ϱ (Π, ζ κ , ¯µ) dν,  Theorem 6. [Weak Duality Theorem] Assume
                                                              that (σ, ω)∈T and (ζ, ϱ, χ, λ, τ, ¯ a, b, µ)∈ T MW .
                                      P p                     Further, if
            Using (3), (18) and ¯χ≧0,   i=1  ¯ χ i =1, the above     Z
            inequality gives                                              T             T
                                                                  (i)    λ θ(., ., b)dν +τ β(., ., µ) dν   is
                                                                      Ω
                                                                     quasi-invex w.r.t. η and ξ at (ζ, ϱ);
                    Z
                                                                   Z
                             ¯
                                                  ¯
                                   ¯
                                             T
                 0>    η(t, ¯σ, ζ, ¯σ κ , ζ ϱ , ¯ω, ¯ϱ) ¯χ Ψ ζ Π, ¯ a  (ii)  Ψ(., ¯ a)dν is strictly pseudo-invex w.r.t.
                     Ω
                                                                      Ω
                                       T
                                           ¯ ¯
                      ¯ T
                            ¯ ¯ ¯
                    +λ θ ζ (Π, ζ κ , b)+ ¯τ β ζ (Π, ζ κ , ¯µ)        η and ξ at (ζ, ϱ);

                           ¯     ¯        ¯ T   ¯ ¯ ¯         then, the following inequality cannot hold
                +D κ η(t, ¯σ, ζ, ¯σ κ , ζ ϱ , ¯ω, ¯ϱ) λ θ ζ κ (Π, ζ κ , b)
                                                                      Z              Z
                             T    ¯ ¯
                                                                          Ψ(Λ, ¯ a)dν <  Ψ(Π, ¯ a)dν.
                          +¯τ β ζ κ (Π, ζ κ , ¯µ) dν
                                                                         Ω             Ω
                  Z

                                 ¯
                           ¯
                                                 ¯
                                           T
                 +   ξ(t, ¯σ, ζ, ¯σ κ , ζ ϱ , ¯ω, ¯ϱ) ¯χ Ψ ϱ Π, ¯ a +
                    Ω                                         Proof. Let (σ, ω) and (ζ, ϱ, χ, λ, τ, ¯ a, b, µ) be ro-

                                           ¯
                                    T
                   ¯ T
                         ¯ ¯ ¯
                   λ θ ϱ (Π, ζ κ , b)+ ¯τ β ϱ (Π, ζ κ , ¯µ) dν,  bust feasible solutions of (RUVP) and (MWD), re-
                                                              spectively. As λ≧0,
            which conflicts with equation (19). Thus, (¯σ, ¯ω)=
             ¯
            (ζ, ¯ϱ).                                     □
                                                                 Z                       Z
                                                                     T
                                                                                             T
                                                                    λ θ(Λ, σ κ , b)dν ≦ 0≦  λ θ(Π, ζ κ , b)dν
                                                                  Ω                       Ω
            4. Mond-Weir type dual and duality                and
                theorems
                                                                Z                       Z
                                                                    T
                                                                                            T
            In this section, the Mond Weir type dual is pre-       τ β(Λ, σ κ , µ)dν = 0=  τ β(Π, ζ κ , µ)dν,
            sented. For this dual, the duality results under     Ω                        Ω
            weaker conditions are derived which extend its    Hence,
            application to vast area. The robust Mond-Weir
                                                                   Z
            type dual associated with the multi-time vector            λ θ(Λ, σ κ , b)+τ β(Λ, σ κ , µ) dν ≦

                                                                        T
                                                                                       T
            variational control problem (RUVP) is defined as        Ω
            below :                                                 Z    T            T
                                                                        λ θ(Π, ζ κ , b)+τ β(Π, ζ κ , µ) dν.
                                                                     Ω

                                      Z
                                                              Thus, hypothesis (i) gives
                   (MWD)      max        Ψ(Π, ¯ a)dν =
                            (ζ(.),ϱ(.))  Ω
                                                                  Z

                                                   !
                  Z                  Z                                                     T
                                                                     η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ (Π, ζ κ , b)+
                     Ψ 1 (Π, ¯ a 1 )dν, ...,  Ψ p (Π, ¯ a p )dν    Ω
                   Ω                  Ω
                                                                              T
                                                                             τ β ζ (Π, ζ κ , µ) dν
                               subject to                        Z
                                                                                            T
              T
                           T
                                            T
             χ Ψ ζ (Π,¯ a)+λ θ ζ (Π, ζ κ (t), b)+τ β ζ (Π,ζ κ (t), µ)  +  D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)+
                                                                   Ω
                                                           132
   133   134   135   136   137   138   139   140   141   142   143