Page 141 - IJOCTA-15-1
P. 141
Duality for robust multi-dimensional vector variational control problem under invexity
[6] Jeyakumar, V., Li, G., & Lee, G. M. (2012). Ro- Fractal and Fractional , 7, 18. https://doi.or
bust duality for generalized convex programming g/10.3390/fractalfract7010018
problems under data uncertainty. Nonlinear Anal- [17] Zhai, Y., Wang, Q., & Tang, T. (2023). Robust
ysis, Theory, Methods and Applications, 75, 1362- duality for robust efficient solutions in uncertain
1373. https://doi.org/10.1016/j.na.2011. vector optimization problems. Japan Journal of
04.006 Industrial and Applied Mathematics, 40, 907-928.
[7] Treant¸˘a, S., & Das, K. (2021). On robust saddle- https://doi.org/10.1007/s13160-022-00562
point criterion in optimization problems with -7
curvilinear integral functionals. Mathematics, 9, [18] Hanson, M. A. (1981). On sufficiency of the Kuhn-
1790. https://doi.org/10.3390/math9151790 Tucker conditions. Journal of Mathematical Anal-
[8] Treant¸˘a, S. (2021). Robust saddle-point criterion ysis and Applications, 80, 545-550. https://doi.
in second-order partial differential equation and org/10.1016/0022-247X(81)90123-2
partial differential inequation constrained con- [19] Mond, B., Chandra, S., & Husain, I. (1988) Dual-
trol problems. International Journal of Robust ity for variational problems with invexity. Journal
and Nonlinear Control, 31, 9282-9293. https: of Mathematical Analysis and Applications, 134,
//doi.org/10.1002/rnc.5767 322-328. https://doi.org/10.1016/0022-247
[9] Elhia, M., Balatif, O., Boujallal, L., & Rachik, M. X(88)90026-1
(2021). Optimal control problem for a tuberculo- [20] Nahak, C., & Nanda, S. (1996). Duality for multi-
sis model with multiple infectious compartments objective variational problems with invexity. Op-
and time delays. An International Journal of Op- timization, 36, 235-248. https://doi.org/10.1
timization and Control: Theories & Applications 080/02331939608844181
(IJOCTA), 11, 75-91. https://doi.org/10.111 [21] Mititelu, S. (2009). Optimality and duality for in-
21/ijocta.01.2021.00885 vex multi-time control problems with mixed con-
[10] Singh, H. P., Bhatia, S. K., Bahri, Y., & Jain, straints. Journal of Advanced Mathematical Stud-
R. (2022). Optimal control strategies to combat ies, 2, 25-34.
COVID-19 transmission: A mathematical model
[22] Gulati, T. R., & Mehndiratta, G. (2010). Opti-
with incubation time delay. Results in Control
mality and duality for second-order multiobjec-
and Optimization, 9, 100176. https://doi.or
tive variational problems. European Journal of
g/10.1016/j.rico.2022.100176
Pure and Applied Mathematics, 3, 786-805.
[11] Aksoy, N. Y., Celik, E., & Dadas, M. E. (2023).
[23] Sachdev, G., Verma, K., & Gulati, T. R. (2019).
The solvability of the optimal control problem
Second-order symmetric duality in multiobjective
for a nonlinear Schr¨odinger equation. An Interna-
variational problems. Yugoslav Journal of Opera-
tional Journal of Optimization and Control: The-
tions Research, 29, 295-308. https://doi.org/
ories & Applications (IJOCTA), 13, 269-276. ht
10.2298/YJOR180715019S
tps://doi.org/10.11121/ijocta.2023.1371
[24] Singh, V., Ahmad, I., Gupta, S. K., & Al-
[12] Kostyukova, O., & Tchemisova, T. (2024). Ex-
Homidan, S. (2021). Duality for multiobjective
ploring constraint qualification-free optimality
variational problems under second-order (ϕ, ρ)-
conditions for linear second-order cone program-
invexity. Filomat, 35, 605-615. https://doi.or
ming. An International Journal of Optimization
g/10.2298/FIL2102605S
and Control: Theories & Applications (IJOCTA),
[25] Dubey, V. P., Kumar, D., Alshehri, H. M., Singh,
14, 168-182. https://doi.org/10.11121/ijoct
J., & Baleanu, D. (2022). Generalized invexity
a.1421
and duality in multiobjective variational prob-
[13] Mititelu, S¸., & Treant¸˘a, S. (2016). Multiobjective
lems involving non-singular fractional derivative.
fractional variational problem on higher-order jet
bundles. Communications in Mathematics and Open Physics, 20, 939-962. https://doi.org/10
.1515/phys-2022-0195
Statistics, 4 , 323-340. https://doi.org/10.1
007/s40304-016-0087-0 [26] Jayswal, A., & Arana-Jim´enez, M. (2022). Ro-
[14] Treant¸˘a, S. (2020). Constrained variational prob- bust penalty function method for an uncertain
lems governed by second-order Lagrangians. Ap- multi-time control optimization problems. Jour-
plicable Analysis, 99, 1467-1484. https://doi. nal of Mathematical Analysis and Applications,
org/10.1080/00036811.2018.1538501 505, 125453. https://doi.org/10.1016/j.jmaa
[15] Jayswal, A., Preeti, & Treant¸˘a, S. (2022). Ro- .2021.125453
bust Duality for Multi-dimensional Variational [27] Baranwal, A., Jayswal, A., & Preeti. (2022). Ro-
Control Problem with Data Uncertainty. Multi- bust duality for the uncertain multitime control
dimensional Control Problems: Robust Approach, optimization problems. International Journal of
145-165. https://doi.org/10.1007/978-981-1 Robust and Nonlinear Control, 32, 5837-5847.
9-6561-6_7 https://doi.org/10.1002/rnc.6113
[16] Ritu, Treant¸˘a, S., Agarwal, D., & Sachdev, G. [28] Antczak, T., & Treant¸˘a, S. (2023). Solving invex
(2023). Robust efficiency conditions in multiple- multitime control problems with first-order PDE
objective fractional variational control problems. constraints via the absolute value exact penalty
135

