Page 139 - IJOCTA-15-1
P. 139

Duality for robust multi-dimensional vector variational control problem under invexity
                                                                              ¯
                                                                                    ¯

                            T                                 Suppose (¯σ, ¯ω, ¯χ,λ,¯τ,¯ a,b, ¯µ) is not a weak efficient
                           τ β ζ κ (Π, ζ κ , µ) dν
                                                              solution to (MWD). Therefore, ∃ another point
                  Z

                                          T
                +   ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ϱ (Π, ζ κ , b)+  (ζ, ϱ, χ, λ, τ, ¯ a, b, µ)∈T MW such that
                   Ω

                                                                       Z               Z
                          T
                         τ β ϱ (Π, ζ κ , µ) dν ≦0.                                          ¯
                                                                          Ψ(Π, ¯ a)dν ≧  Ψ Λ, ¯ a dν
                                                                         Ω              Ω
            Using dual constraints (23) and (24) in the above
                                                              contradicting Theorem 6.
            inequality, we get
                                                                                   ¯
                                                                             ¯
                                                              Hence, (¯σ, ¯ω, ¯χ,λ,¯τ,¯ a,b, ¯µ) is a robust weak ef-
                                                              ficient solution to (MWD).   Further, it follows
                 Z

                                            T
                   η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) −χ Ψ ζ (Π, ¯ a)+  that the objective function values of (RUVP) and
                                                                                          ¯
                                                                                                 ¯
                  Ω                                           (MWD) are equal at (¯σ, ¯ω, ¯χ, λ, ¯τ, ¯ a, b, ¯µ).  □

                     T               T
                D κ λ θ ζ κ  (Π, ζ κ , b)+τ β ζ κ (Π, ζ κ , µ)  dν  Theorem 8.  [Strict Converse Duality Theo-
                                                              rem]   Assume (¯σ, ¯ω) and (ζ, ¯ϱ, ¯χ, λ, ¯τ, ¯ a, b, ¯µ) to
                Z                                                                       ¯      ¯      ¯

                                           T
              +   D κ η(t, σ, ζ, σ κ , ζ κ , ω, ϱ) λ θ ζ κ (Π, ζ κ , b)+  be robust weak efficient solutions of (RUVP) and
                 Ω
                                                             (MWD) respectively, such that
                            T
                           τ β ζ κ (Π, ζ κ , µ) dν
                                                                       Z              Z
               Z
                                                                           ¯             ¯
                                          T
             +   ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ) −χ Ψ ϱ (Π, ¯ a) dν ≦0.      Ψ Λ, ¯ a dν =  Ψ Π, ¯ a dν     (30)
                                                                         Ω              Ω
                Ω
                                                                         Z
            Further, integrating by parts and using boundary
                                                              Further, if   Ψ(., ¯ a)dν is strictly pseudo-invex
            conditions, we get
                                                                           Ω
                                                                   Z

                                                                       ¯ T
                                                                                    T
                                                                               ¯
                                                              and      λ θ(., ., b)+ ¯τ β(., ., ¯µ) dν are quasi-
                 Z

                                           T
                    − η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)χ Ψ ζ (Π, ¯ a)+   Ω
                                                                                                        ¯
                                                                                     ¯
                  Ω                                           invex w.r.t η and ξ at (ζ, ¯ϱ), then (¯σ, ¯ω)=(ζ, ¯ϱ).

                                    T
               ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ)χ Ψ ϱ (Π, ¯ a) dν ≦0,  (29)
                                                              Proof. Suppose to the contrary that (¯σ, ¯ω)̸=
                                                              (ζ, ¯ϱ). Since (¯σ, ¯ω)∈T and (ζ, ¯ϱ, ¯χ, λ, ¯τ, ¯ a, b, ¯µ)∈
                                             Z                 ¯                         ¯      ¯      ¯
            On    the  contrary,   suppose      Ψ(Λ, ¯ a)dν <  T MW , respectively, then for λ≧0,
                                                                                          ¯
                                              Ω
            Z

               Ψ(Π, ¯ a) dν which by strict pseudo-invexity      Z                       Z
                                                                                                ¯ ¯ ¯
                                                                    ¯ T  ¯    ¯            λ θ(Π, ζ κ , b)dν
                                                                                           ¯ T
                                                                    λ θ(Λ, ¯σ κ , b)dν ≦ 0≦
            of ΩR  Ψ(., ¯ a)dν at (ζ, ϱ) and for χ>0 imply        Ω                       Ω
                Ω                                             and
                  Z

                                           T
                      η(t, σ, ζ, σ κ , ζ κ , ω, ϱ)χ Ψ ζ (Π, ¯ a)+
                   Ω                                            Z                       Z
                                                                   ¯ τ β(Λ, ¯σ κ , ¯µ)dν = 0=  ¯ τ β(Π, ζ κ , ¯µ)dν.
                                                                   T   ¯                   T   ¯ ¯
                                      T
                 ξ(t, σ, ζ, σ κ , ζ κ , ω, ϱ)χ Ψ ϱ (Π, ¯ a) dν <0,  Ω                     Ω
            a contradiction to (29). Hence, the result fol-   Hence,
            lows.                                        □
                                                                   Z

                                                                       ¯ T  ¯    ¯     T  ¯
                                                                       λ θ(Λ, ¯σ κ , b)+ ¯τ β(Λ, ¯σ κ , ¯µ) dν ≦
            Theorem 7. [Strong Duality Theorem]       Con-
                                                                    Ω
            sider (¯σ, ¯ω)∈T to be a robust weak efficient          Z
                                                                        ¯ T  ¯ ¯ ¯     T   ¯ ¯
            solution to (RUVP). Then, ∃ multipliers ¯χ∈                 λ θ(Π, ζ κ , b)+ ¯τ β(Π, ζ κ , ¯µ) dν.
                                               ¯
              p ¯
                                  n
                        m
            R , λ(t)∈R , ¯τ(t)∈R , and ¯ a ∈A, b∈B, ¯µ∈M             Ω                       Z
                        +
                                     ¯
                                                                                                         ¯
                                                                                                 ¯ T
                               ¯
            such that (¯σ, ¯ω, ¯χ, λ, ¯τ, ¯ a, b, ¯µ)∈T MW . Further,  By  quasi-invexity  of    λ θ(., ., b)+
            if assumptions of Theorem 6 holds true, then       T                             Ω
                     ¯
                           ¯
            (¯σ, ¯ω, ¯χ, λ, ¯τ, ¯ a, b, ¯µ) is a robust weak efficient so-  ¯ τ β(., ., ¯µ) dν, the above inequality implies
            lution to the problem (MWD) and the optimal val-
                                                                  Z
            ues of (RUVP) and (RMWD) are equal.
                                                                                 ¯
                                                                                          ¯ T
                                                                           ¯
                                                                                                     ¯
                                                                                               ¯
                                                                     η(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) λ θ ζ (Π, ¯σ κ , b)+
                                                                   Ω

                                                                                  ¯
                                                                              T
                                                                             ¯ τ β ζ (Π, ¯σ κ , ¯µ) dν
            Proof. As (¯σ, ¯ω) is a robust weak efficient solu-
                                                          p
            tion to (RUVP), hence, using Theorem 1, ∃ ¯χ∈R ,     Z           ¯     ¯       ¯ T   ¯     ¯
            ¯       m         n     ¯                          +    D κ η(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) λ θ ζ κ (Π, ¯σ κ , b)+
            λ(t)∈R , ¯τ(t)∈R , and b∈B, ¯µ∈M , ¯ a ∈A such
                    +                                             Ω
            that the conditions (1)−(4) are satisfied at (¯σ, ¯ω).
                                                                             T    (Π, ¯σ κ , ¯µ) dν
                                                                                   ¯
            Hence, in view of constraints (23)−(28) it follows              ¯ τ β ζ κ
                          ¯
                                ¯
            that (¯σ, ¯ω, ¯χ, λ, ¯τ, ¯ a, b, ¯µ) is a robust feasible so-  Z
                                                                                                      ¯
                                                                                  ¯
                                                                                                ¯
                                                                                           ¯ T
                                                                            ¯
                                                                 +    ξ(t, ¯σ, ζ, ¯σ κ , ζ κ , ¯ω, ¯ϱ) λ θ ϱ (Π, ¯σ κ , b)+
            lution to (MWD).
                                                                    Ω
                                                           133
   134   135   136   137   138   139   140   141   142   143   144