Page 163 - IJOCTA-15-1
P. 163

Improvements of Hermite-Hadamard-Mercer inequality using k-fractional integral
                                                                                     α
            ν : [δ 1 , δ 2 ] → R be integrable, nonnegative and  Multiplying (8) with  α t κ −1  and integrating from
                                                                                   κ
            symmetric to  δ 1 +δ 2  . Then the fractional integrals  0 to 1, we get
                            2
            inequalities
                                                                            αu + κv
                                                              ω(δ 1 + δ 2 −       )

                        δ 1 + δ 2   γ         γ                              α + κ
                     ω            J + ν(δ 2 ) + J − ν(δ 1 )
                           2       δ 1        δ 2                             ≤ ω(δ 1 ) + ω(δ 2 )
                             γ
                                            γ
                         ≤ J + (ων) (δ 2 ) + J − (ων) (δ 1 )         2   Z  1
                             δ              δ                      α          α −1        κt        κt
                              1             2                 −              t κ  ω (1−       )u+       v dt
                   ω(δ 1 ) + ω(δ 2 )    γ    γ                κ(α + κ)  0             α + κ     α + κ
                 ≤                J + ν(δ 2 ) + J − ν(δ 1 )            Z
                         2         δ 1        δ 2                  α      1  α  −1  αt             αt
                                                               −           t κ  ω       u + (1 −       )v dt
                                                                 α + κ   0         α + κ         α + κ
            hold for all γ > 0.                                                  αu + κv
                                                                  ⇒ ω(δ 1 + δ 2 −        ) ≤ ω(δ 1 ) + ω(δ 2 )
            Adil et. al in, 42  gave H-H-Mercer type inequalities                 α + κ             α
            for strongly convex functions. They also estab-             α 2   Z  αu+κv  α + κ λ − u  κ −1
                                                                                 α+κ
                                                                   −
            lished H-H-mercer type inequalities for differen-        κ(α + κ)  u          κ   v − u
            tiable functions. In this article, we present H-H-                     α + κ dλ
            Mercer type inequality, involving both right and                 × ω(λ)  κ   v − u
            left k-fractional integral operators.                            Z  αu+κv            α −1
                                                                         α      α+κ   α + κ v − η  κ
                                                                    −
            2. Main result                                             α + κ  v         α   v − u

                                                                                              α + κ dη
            Theorem 3. Let ω : [δ 1 , δ 2 ] → R be convex func-                    × ω(η) −
            tion, u, v ∈ [δ 1 , δ 2 ] such that u < v. Then the                                 α   v − u
            inequalities
                                                                               αu + κv
                                                                 ⇒ ω(δ 1 + δ 2 −       )
                                                                                α + κ

                           αu + κv
              ω δ 1 + δ 2 −                                                   ≤ ω(δ 1 ) + ω(δ 2 )
                            α + κ
                                                                             α
                                                                     2
                                            α −1                   α (α + κ) κ −1  Z  αu+κv     α
                                                                                    α+κ
                                     (α + κ) κ  Γ κ (α)          −                       (λ − u) κ −1  ω(λ)dλ
                                                                     α
                                                                               α
                   ≤ ω(δ 1 ) + ω(δ 2 ) −        α                  κ κ +1 (v − u) κ
                                         (v − u) κ                                u
                                                                             α     Z
                  2                                                 (α + κ) κ −1   v          α
                  α   α,κ              κ    α,κ                   −                               −1
              ×    α J  αu+κv − ω(u) +  α  J  αu+κv + ω(v)            α −1       α       (v − η) κ  ω(η)dη
                  κ κ (  α+κ  )       α κ −1  (  α+κ  )              α κ  (v − u) κ  αu+κv
                                                                                     α+κ

                                             αu + κv
                        ≤ ω(δ 1 ) + ω(δ 2 ) − ω         (6)                    αu + κv
                                              α + κ              ⇒ ω(δ 1 + δ 2 −       )
                                                                                α + κ
                                                                                2             α −1
            hold, where α, κ > 0.                                              α Γ κ (α)(α + κ) κ  α,κ
                                                               ≤ ω(δ 1 )+ω(δ 2 )−   α       α    J  αu+κv − ω(u)
                                                                                  κ κ (v − u) κ    (  α+κ  )
            Proof. From Mercer’s inequality, we have
                                                                                         α −1
                                                                           κΓ κ (α)(α + κ) κ   α,κ
                                                                         −     α −1       α  J  αu+κv + ω(v)
                          αx + κy                                            α κ   (v − u) κ  (  α+κ  )
              ω(δ 1 + δ 2 −       )
                           α + κ
                                  α            κ                               αu + κv
              ≤ ω(δ 1 ) + ω(δ 2 ) −  ω(x) −       ω(y) (7)       ⇒ ω(δ 1 + δ 2 −       )
                                α + κ       α + κ                               α + κ
                                                                                           α      2
                                                                               Γ κ (α)(α + κ) κ  −1   α  α,κ
            Substituting x = (1 −   κt  )u + (  κt  )v and y =  ≤ ω(δ 1 )+ω(δ 2 )−        α       α J  αu+κv − ω(u)
                                   α+κ      α+κ                                    (v − u) κ     κ κ (  α+κ  )
             αt  u + (1 −  αt
             α+κ         α+κ )v, where t ∈ [0, 1] we have                            κ    α,κ
                                                                                 +   α  J  αu+κv + ω(v) . (9)
                                                                                   α κ  −1  (  α+κ  )
                          αu + κv
              ω(δ 1 + δ 2 −       )                           Now we prove the second part of inequality (6).
                           α + κ

                               α           κt         κt
             ≤ ω(δ 1 )+ω(δ 2 )−    ω (1−       )u+(      )v     αu + κv
                             α + κ       α + κ      α + κ     ω          =
                                                                  α + κ

                    κ         αt             αt                    κt       κt          αt     αt   
                −       ω         u + (1 −       )v   . (8)      α  α+κ v + 1 −  α+κ  u + κ  1 −  α+κ  v +  α+κ u
                  α + κ      α + κ         α + κ              ω                                            
                                                                                    α + κ
                                                           157
   158   159   160   161   162   163   164   165   166   167   168