Page 166 - IJOCTA-15-1
P. 166

J. Khan, M. Adil Khan, S. Sarwar / IJOCTA, Vol.15, No.1, pp.155-165 (2025)

            Remark 1. If we substitute α = κ = 1, u = δ 1
            and v = δ 2 in (11), we obtain                             α −1       2
                                                                 (α + κ) κ  Γ κ (α) α  α,κ
                                                                           α       α J  αu+κv + ω(v)
                      Z
                 1      δ 2        ω(δ 1 ) + ω(δ 2 )                (v − u) κ     κ κ (     )
                          ω(s)ds −                                                       α+κ
               δ 2 − δ 1                 2                            κ
                       δ 1                                       +       J  α,κ            αω(u) + κω(v)
                          1                                            −1
                        Z                                       α     αu+κv − ω(u) −
                 δ 2 − δ 1           ′  t          t                α κ   (  α+κ  )            α + κ
              =            (t − 1) ω     δ 1 + 1 −    δ 2
                   4     0             2           2

                                        t       t                                 ακ(v − u)
                                ′
                            −ω      1 −    δ 1 + δ 2   dt.                      ≤
                                        2       2                                  (α + κ) 2
                                                                    1
                                                                 Z
                                                                           α      αt             αt
                                                                               ′
                                                                     (1 − t κ ) ω (    )u + (1 −      )v
                                                                                 α + κ          α + κ
                                                                   0

                                     ′
            Theorem 4. Suppose |ω | is a convex function               + ω (1 −     κt  )u + (  κt  )v     dt.
                                                                          ′

            defined on [δ 1 , δ 2 ], u, v ∈ [δ 1 , δ 2 ] such that u < v         α + κ       α + κ
                                                                      ′
            and α, κ > 0, Then                                Since |ω | is convex, therefore
                                                                        α
                                                                        −1        2
                                                                 (α + κ) κ  Γ κ (α) α  α,κ
                                                                                   α J
                                                                            α           αu+κv + ω(v)
                                                                                  κ κ (     )
                                                                    (v − u) κ
                       α  −1      2                                                     α+κ

                (α + κ) κ  Γ κ (α) α  α,κ
                           α       α J  αu+κv + ω(v)                  κ    α,κ             αω(u) + κω(v)
                                                                +       J
                    (v − u) κ     κ κ (     )                        α     αu+κv − ω(u) −
                                       α+κ                            −1
                                                                    α κ   (  α+κ  )            α + κ

                    κ    α,κ             αω(u) + κω(v)                         Z  1
                +   α  J  αu+κv − ω(u) −                          ≤  ακ(v − u)     (1 − t κ )  αt  |ω (u)|
                                                                                         α
                                                                                                    ′
                  α κ −1  (  α+κ  )          α + κ                   (α + κ) 2   0          α + κ

                                                                                    αt     ′
                                 ′
                                                  ′




             ≤ (v − u) P 1 (α, κ) ω (u) + P 2 (α, κ) ω (v) ,               + (1 −  α + κ )|ω (v)|


                                                       (14)             Z  1
                                                                                 α        κt     ′
                                                                      +    (1 − t κ ) (1 −    )|ω (u)|
                                                                         0               α + κ
            where                                                                            κt
                                                                                                  ′
                                                                                        +       |ω (v)|  dt
                                                                                           α + κ
                                      2
                                   3α k
                  P 1 (α, κ) =                , and                          ακ     α − κ  Z  1    α
                             2(α + 2κ)(α + κ) 2                  = (v − u)                    t(1 − t κ )dt
                                                                           (α + κ) 2  α + κ  0
                                                                             Z  1
                                    2
                                                                                     α
                                   α κ (α + 5κ)                           +     (1 − t κ )dt |ω (u)|
                                                                                             ′
                     P 2 (α, κ) =                 .
                                        3
                                2(α + κ) (α + 2κ)                             0
                                                                                     Z  1
                                                                              ακ              α
                                                                         +              (1 − t κ )dt
                                                                            (α + κ) 2  0
            Proof. Taking the absolute of (11), we have
                       α                                                      α − κ  Z  1     α
                       −1        2                                                                 ′
               (α + κ) κ  Γ κ (α) α  α,κ                                   −          t(1 − t κ )dt |ω (v)|
                          α                                                          0
                                  α J  αu+κv + ω(v)                          α + κ
                   (v − u) κ           α+κ
                                κ κ (     )


                    κ    α,κ             αω(u) + κω(v)        = (v − u) P 1 (α, κ) ω (u) + P 2 (α, κ) ω (v) .
                                                                                                    ′
                                                                                   ′

                +   α  J  αu+κv − ω(u) −
                  α κ  −1  (  α+κ  )          α + κ
                                    Z
                           ακ(v − u)  1   α
                       =                t κ − 1
                            (α + κ) 2  0
                                                           Remark 2. If we put α = κ = 1, u = δ 1 and
                            αt             αt                 v = δ 2 in (14), we obtain Theorem 2.2 of. 43
                        ′
                      ω         u + (1 −       )v
                           α + κ         α + κ
                           κt         κt
               − ω ′  (1 −      )u + (     )v dt dt . (15)

                          α + κ      α + κ                                       ′ q
                                                              Theorem 5. Let |ω | be a convex function for
                 α             α
            As |t κ − 1| = (1 − t κ ) for t ∈ [0, 1], therefore  q ≥ 1 and let u, v ∈ [δ 1 , δ 2 ] such that u < v. Then
                                                           160
   161   162   163   164   165   166   167   168   169   170   171