Page 169 - IJOCTA-15-1
P. 169

Improvements of Hermite-Hadamard-Mercer inequality using k-fractional integral

             [3] Zhao, T. H., Wang, M. K., & Chu, Y. M. (2021).  [15] Chu, H.H., Kalsoom, H., Rashid, S., Idrees, M.,
                Concavity and bounds involving generalized ellip-  Safdar, F., Chu, Y.-M., & Baleanu, D. (2020).
                tic integral of the first kind. Journal of Mathemat-  Quantum analogs of Ostrowski-type inequalities
                ical Inequalities, 15(2), 701-724. http://dx.doi  for Raina’s function correlated with coordinated
                .org/10.7153/jmi-2021-15-50                       generalized Φ-convex functions, Symmetry, 12(2),
             [4] Chu, Y. M., & Zhao, T. H. (2015). Convexity and  308. https://doi.org/10.3390/sym12020308
                concavity of the complete elliptic integrals with  [16] Khan, M. A., Wu, S. H., Ullah, H., & Chu, Y.
                respect to Lehmer mean, Journal of Inequalities   M. (2019). Discrete majorization type inequal-
                and Application, 396, 1-6. http://dx.doi.org/1    ities for convex functions on rectangles. Journal
                0.1186/s13660-015-0926-7                          of Inequalities and Applications, 16, 1-18. http:
             [5] Chen, S. B., Rashid, S. Noor, M. A., Hammouch,   //dx.doi.org/10.1186/s13660-019-1964-3
                Z., & Chu Y. M. (2020). New fractional ap-    [17] Zhao, T. H., Shi, L., & Chu, Y. M. (2020). Con-
                proaches for n-polynomial P-convexity with ap-    vexity and concavity of the modified Bessel func-
                plications in special function theory. Advances in  tions of the first kind with respect to H¨older
                Difference Equations, 543. http://dx.doi.org      means. Revista de la Real Academia de Ciencias
                /10.1186/s13662-020-03000-5                       Exactas, Fysicas y Naturales (Espana), 114(2),
             [6] Ahmad, K., Khan M. A., Khan, S., Ali, A., & Chu  96. http://dx.doi.org/10.1007/s13398-020
                Y. M. (2021). New estimation of Zipf-Mandelbrot   -00825-3
                and Shannon entropies via refinements of Jensen’s  [18] Zhao, T. H., Wang, M. K., Zhang, W., & Chu,Y.
                inequality. AIP Advances, 11(1), 015147. http:    M. (2018). Quadratic transformation inequalities
                //dx.doi.org/10.1063/5.0039672                    for Gaussian hypergeometric function. Journal of
             [7] Hudzik, H., & Maligranda, L. (1994). Some re-    Inequalities and Applications, 2018, 251. http:
                marks on s-convex functions. Aequationes Math-    //dx.doi.org/10.1186/s13660-018-1848-y
                ematicae, 48, 100-111. http://dx.doi.org/10.
                                                              [19] Chu Y. M., & Zhao, T. H. (2016). Concav-
                1007/BF01837981
                                                                  ity of the error function with respect to H¨older
             [8] Sana, G., Khan, M. B., Noor, M. A., Mohammed,
                                                                  means. Mathematical Inequalities and Applica-
                P. O., & Chu, Y. M. (2021). Harmonically convex
                                                                  tions, 19(2), 589-595. http://dx.doi.org/10.
                fuzzy-interval-valued functions and fuzzy-interval
                                                                  7153/mia-19-43
                Riemann-Liouville fractional integral inequalities.
                International Journal of Computational Intelli-  [20] Chen, S.-B., Rashid, S., Noor, M. A., Ashraf, R.;
                                                                  & Chu, Y.-M. (2020). A new approach on frac-
                gence Systems, 14(1), 1809-1822. http://dx.d
                                                                  tional calculus and probability density function,
                oi.org/10.2991/ijcis.d.210620.001
             [9] Varoˇsanec, S. (2007). On h-convexity. Journal   AIMS Mathematics, 5(6), 7041–7054. https:
                of Mathematical Analysis and Applications, 326,   //doi.org/10.3934/math.2020451
                303-311. http://dx.doi.org/10.1016/j.jmaa.    [21] Jain, S., Goyal, R. , Agarwal, P., & Momani, S.
                2006.02.086                                       (2023). Certain saigo type fractional integral in-
            [10] Awan, M., Noor, M. A., & Noor, K. I. (2018).     equalities and their q-analogues. An International
                Hermite-Hadamard Inequalities for exponentially   Journal of Optimization and Control: Theories
                convex functions. Applied Mathematics and Infor-  & Applications (IJOCTA), 13(1), 1-9. https:
                mation Sciences, 12(2), 405-409. http://dx.doi    //doi.org/10.11121/ijocta.2023.1258
                .org/10.18576/amis/120215                     [22] Mallma Ramirez, L., Maculan, N., Elias Xavier,
            [11] Toader, G. (1985). Some generalizations of the   A., & Layter Xavier, V. (2024). Dislocation hy-
                convexity. Proceedings of the Colloquium on Ap-   perbolic augmented Lagrangian algorithm in con-
                proximation and Optimization, University Cluj-    vex programming. An International Journal of
                Napoca, 1985, 329-338.                            Optimization and Control: Theories & Applica-
                 ¨
            [12] Ozcan, S. (2020). Hermite-Hadamard type in-      tions (IJOCTA), 14(2), 147-155. https://doi.
                equalities for m-convex and (α, m)-convex func-   org/10.11121/ijocta.1402
                tions. Journal of Inequalities and Applications,
                                                              [23] Mitrinovic, D. S., & Lackovic, I. B. (1985). Her-
                2020, 175. https://doi.org/10.1186/s13660
                                                                  mite and convexity. Aequationes Mathematicae,
                -020-02442-5
                                                                  28(3), 229-232.http://dx.doi.org/10.1007/B
            [13] You, X., Khan M. A., Ullah, H., & Saeed T.
                                                                  F02189414
                (2022). Improvements of Slater’s inequality by
                                                                                     ´
                                                              [24] Hadamard, J. (1893). Etude sur les propri´et´es des
                means of 4-convexity and its applications. Math-
                                                                                                 `
                                                                  fonctions enti`eres et en particulier dune fonction
                ematics, 10, 1274. http://dx.doi.org/10.3390
                                                                  consid´er´ee par Riemann. Journal de Mathema-
                /math10081274
            [14] Sezer, S., Eken, Z., Tinaztepe, G., & Adilov, G.  tiques Pures et Appliquees, 58, 171-215.
                (2021). p-convex functions and some of their prop-  [25] Niculescu, C. P. (2003-04). Old and new on the
                erties. Numerical Functional Analysis and Opti-   Hermite-Hadamard inequality. Real Analysis Ex-
                mization, 42, 443-459. http://dx.doi.org/10.      change, 29(2), 663-685. https://doi.org/10.1
                1080/01630563.2021.1884876                        4321/REALANALEXCH\.29.2.0663
                                                           163
   164   165   166   167   168   169   170   171   172   173   174