Page 169 - IJOCTA-15-1
P. 169
Improvements of Hermite-Hadamard-Mercer inequality using k-fractional integral
[3] Zhao, T. H., Wang, M. K., & Chu, Y. M. (2021). [15] Chu, H.H., Kalsoom, H., Rashid, S., Idrees, M.,
Concavity and bounds involving generalized ellip- Safdar, F., Chu, Y.-M., & Baleanu, D. (2020).
tic integral of the first kind. Journal of Mathemat- Quantum analogs of Ostrowski-type inequalities
ical Inequalities, 15(2), 701-724. http://dx.doi for Raina’s function correlated with coordinated
.org/10.7153/jmi-2021-15-50 generalized Φ-convex functions, Symmetry, 12(2),
[4] Chu, Y. M., & Zhao, T. H. (2015). Convexity and 308. https://doi.org/10.3390/sym12020308
concavity of the complete elliptic integrals with [16] Khan, M. A., Wu, S. H., Ullah, H., & Chu, Y.
respect to Lehmer mean, Journal of Inequalities M. (2019). Discrete majorization type inequal-
and Application, 396, 1-6. http://dx.doi.org/1 ities for convex functions on rectangles. Journal
0.1186/s13660-015-0926-7 of Inequalities and Applications, 16, 1-18. http:
[5] Chen, S. B., Rashid, S. Noor, M. A., Hammouch, //dx.doi.org/10.1186/s13660-019-1964-3
Z., & Chu Y. M. (2020). New fractional ap- [17] Zhao, T. H., Shi, L., & Chu, Y. M. (2020). Con-
proaches for n-polynomial P-convexity with ap- vexity and concavity of the modified Bessel func-
plications in special function theory. Advances in tions of the first kind with respect to H¨older
Difference Equations, 543. http://dx.doi.org means. Revista de la Real Academia de Ciencias
/10.1186/s13662-020-03000-5 Exactas, Fysicas y Naturales (Espana), 114(2),
[6] Ahmad, K., Khan M. A., Khan, S., Ali, A., & Chu 96. http://dx.doi.org/10.1007/s13398-020
Y. M. (2021). New estimation of Zipf-Mandelbrot -00825-3
and Shannon entropies via refinements of Jensen’s [18] Zhao, T. H., Wang, M. K., Zhang, W., & Chu,Y.
inequality. AIP Advances, 11(1), 015147. http: M. (2018). Quadratic transformation inequalities
//dx.doi.org/10.1063/5.0039672 for Gaussian hypergeometric function. Journal of
[7] Hudzik, H., & Maligranda, L. (1994). Some re- Inequalities and Applications, 2018, 251. http:
marks on s-convex functions. Aequationes Math- //dx.doi.org/10.1186/s13660-018-1848-y
ematicae, 48, 100-111. http://dx.doi.org/10.
[19] Chu Y. M., & Zhao, T. H. (2016). Concav-
1007/BF01837981
ity of the error function with respect to H¨older
[8] Sana, G., Khan, M. B., Noor, M. A., Mohammed,
means. Mathematical Inequalities and Applica-
P. O., & Chu, Y. M. (2021). Harmonically convex
tions, 19(2), 589-595. http://dx.doi.org/10.
fuzzy-interval-valued functions and fuzzy-interval
7153/mia-19-43
Riemann-Liouville fractional integral inequalities.
International Journal of Computational Intelli- [20] Chen, S.-B., Rashid, S., Noor, M. A., Ashraf, R.;
& Chu, Y.-M. (2020). A new approach on frac-
gence Systems, 14(1), 1809-1822. http://dx.d
tional calculus and probability density function,
oi.org/10.2991/ijcis.d.210620.001
[9] Varoˇsanec, S. (2007). On h-convexity. Journal AIMS Mathematics, 5(6), 7041–7054. https:
of Mathematical Analysis and Applications, 326, //doi.org/10.3934/math.2020451
303-311. http://dx.doi.org/10.1016/j.jmaa. [21] Jain, S., Goyal, R. , Agarwal, P., & Momani, S.
2006.02.086 (2023). Certain saigo type fractional integral in-
[10] Awan, M., Noor, M. A., & Noor, K. I. (2018). equalities and their q-analogues. An International
Hermite-Hadamard Inequalities for exponentially Journal of Optimization and Control: Theories
convex functions. Applied Mathematics and Infor- & Applications (IJOCTA), 13(1), 1-9. https:
mation Sciences, 12(2), 405-409. http://dx.doi //doi.org/10.11121/ijocta.2023.1258
.org/10.18576/amis/120215 [22] Mallma Ramirez, L., Maculan, N., Elias Xavier,
[11] Toader, G. (1985). Some generalizations of the A., & Layter Xavier, V. (2024). Dislocation hy-
convexity. Proceedings of the Colloquium on Ap- perbolic augmented Lagrangian algorithm in con-
proximation and Optimization, University Cluj- vex programming. An International Journal of
Napoca, 1985, 329-338. Optimization and Control: Theories & Applica-
¨
[12] Ozcan, S. (2020). Hermite-Hadamard type in- tions (IJOCTA), 14(2), 147-155. https://doi.
equalities for m-convex and (α, m)-convex func- org/10.11121/ijocta.1402
tions. Journal of Inequalities and Applications,
[23] Mitrinovic, D. S., & Lackovic, I. B. (1985). Her-
2020, 175. https://doi.org/10.1186/s13660
mite and convexity. Aequationes Mathematicae,
-020-02442-5
28(3), 229-232.http://dx.doi.org/10.1007/B
[13] You, X., Khan M. A., Ullah, H., & Saeed T.
F02189414
(2022). Improvements of Slater’s inequality by
´
[24] Hadamard, J. (1893). Etude sur les propri´et´es des
means of 4-convexity and its applications. Math-
`
fonctions enti`eres et en particulier dune fonction
ematics, 10, 1274. http://dx.doi.org/10.3390
consid´er´ee par Riemann. Journal de Mathema-
/math10081274
[14] Sezer, S., Eken, Z., Tinaztepe, G., & Adilov, G. tiques Pures et Appliquees, 58, 171-215.
(2021). p-convex functions and some of their prop- [25] Niculescu, C. P. (2003-04). Old and new on the
erties. Numerical Functional Analysis and Opti- Hermite-Hadamard inequality. Real Analysis Ex-
mization, 42, 443-459. http://dx.doi.org/10. change, 29(2), 663-685. https://doi.org/10.1
1080/01630563.2021.1884876 4321/REALANALEXCH\.29.2.0663
163

