Page 170 - IJOCTA-15-1
P. 170
J. Khan, M. Adil Khan, S. Sarwar / IJOCTA, Vol.15, No.1, pp.155-165 (2025)
[26] Iqbal, A., Khan, M. A. Ullah, S., Chu, Y. M. & Theories & Applications (IJOCTA), 13(2), 161-
Kashuri, A. (2018). Hermite-Hadamard type in- 170. https://doi.org/10.11121/ijocta.2023
equalities pertaining conformable fractional inte- .1286
grals and their applications. AIP Advances, 8(7), [37] Sene, N. (2022). Theory and applications of new
075101. http://dx.doi.org/10.1063/1.50319 fractional-order chaotic system under Caputo op-
54 erator. An International Journal of Optimization
[27] Khurshid, Y., Khan, M. A., & Chu, Y. M. (2020). and Control: Theories & Applications (IJOCTA),
Ostrowski type inequalities involving conformable 12(1), 20-38. https://doi.org/10.11121/ijo
integrals via preinvex functions, AIP Advances, cta.2022.1108
˙
˙
10(5), 055204. http://dx.doi.org/10.1063/5 [38] Set, E., Iscan, I., Sarikaya, M. Z., & Ozdemir,
.0008964 M. E. (2015). On new inequalities of Hermite-
[28] Khan, M. A., Khurshid, Y., Du, T. S., & Chu, Y. Hadamard-Fejer type for convex functions via
M. (2018). Generalization of Hermite-Hadamard fractional integrals. Applied Mathematics and
type inequalities via conformable fractional inte- Computation, 259, 875-881. http://dx.doi.o
grals. Journal of Function Spaces, 2018, 5357463. rg/10.1016/j.amc.2015.03.030.
http://dx.doi.org/10.1155/2018/5357463 [39] Li, Y., Samraiz, M., Gul, A., Vivas-Cortez, M.,
[29] Iqbal, A., Khan, M. A., Ullah, S. & Chu, Y. M. & Rahman, G. (2022). Hermite-Hadamard frac-
(2020). Some new Hermite-Hadamard-type in- tional integral inequalities via Abel-Gontscharoff
equalities associated with conformable fractional Green’s function. Fractal and Fractional, 12(3),
integrals and their applications. Journal of Func- 126. http://dx.doi.org/10.3390/fractalfr
tion Spaces, 2020, 9845407. http://dx.doi.org act6030126
/10.1155/2020/9845407 [40] Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N.
[30] Iqbal, A., Khan, M. A., Suleman, M., & Chu, Y. (2013). Hermite-Hadamard’s inequalities for frac-
M. (2020). The right Riemann-Liouville fractional tional integrals and related fractional inequalities.
Hermite-Hadamard type inequalities derived from Mathematical and Computer Modelling, 57 (9),
Green’s function. AIP Advances, 10(4), 045032. 2403- 2407. http://dx.doi.org/10.1016/j.m
http://dx.doi.org/10.1063/1.5143908 cm.2011.12.048
˙
˙
[31] Khan, M. B., Noor, M. A., Abdullah, L., & Chu, [41] I¸scan, I., (2015). Hermite-Hadamard-Fejer type
Y. M. (2021). Some new classes of preinvex fuzzy- inequalities for convex functions via fractional in-
interval-valued functions and inequalities. Inter- tegrals. Studia Universitatis Babes-Bolyai Mathe-
national Journal of Computational Intelligence matica, 60 (3), 355-366. https://doi.org/10.4
Systems, 14(1), 1403-1418. http://dx.doi.org 8550/arXiv.1404.7722
/10.2991/ijcis.d.210409.001 [42] Khan, M. A., Anwar, S., Khalid, S., Mohammed,
[32] Khan, M. B., Noor, M. A., Noor, K. I., & Z., & Sayed, M. M. (2021). Inequalities of
Chu, Y. M. (2021). Higher-order strongly prein- the type Hermite-Hadamard-Jensen-Mercer for
vex fuzzy mappings and fuzzy mixed variational- strong convexity. Mathematical Problems in En-
like inequalities. International Journal of Com- gineering, 2021, 5357463. http://dx.doi.org/1
putational Intelligence Systems, 14(1), 1856-1870. 0.1155/2021/5386488
http://dx.doi.org/10.2991/ijcis.d.21061 [43] Dragomir, S. S. & Agarwal, R.P. (1998). Two
6.001 inequalities of differentiable mappings and ap-
[33] Kalsoom, H., Rashid, S., Idrees, M., Saf- plications to special means of real numbers and
dar, F., Akram, S., Baleanu, D. & Chu, Y. Trapezoidal formula . Applied Mathematics Let-
M. (2020). Post quantum integral inequalities ters, 11(5), 91-95. http://dx.doi.org/10.1016
of Hermite-Hadamard-type associated with co- /S0893-9659(98)00086-X
ordinated higher-order generalized strongly pre-
invex and quasi-pre-invex mappings. Symmetry, Jamroz Khan completed his MS Mathematics from
12(3), 443. http://dx.doi.org/10.3390/sym12 the Department of Basic Sciences at the University of
030443 Engineering and Technology, Peshawar, Pakistan, in
[34] Mercer, A. (2003). A variant of Jensen’s inequal- 2012. He obtained his PhD from the Department of
ity. Journal of Inequalities in Pure and Applied Mathematics at the University of Peshawar, Pakistan.
Mathematics, 4(4), 73. http://eudml.org/doc/ He is currently serving as an Associate Professor of
123826. Mathematics in the KPK Higher Education Depart-
[35] Khan, M. A., & Peˇcari´c, J. (2020). New refine- ment, Pakistan. His research interests include math-
ments of the Jensen-Mercer inequality associated ematical inequalities, the theory of convex functions,
to positive n-tuples. Armenian Journal of Math- information theory, and fractional calculus.
ematics, 12(4), 1-4. http://dx.doi.org/10.52 https://orcid.org/0000-0002-5438-5829
737/18291163-2020.12.4-1-12
[36] Zguaid, K., & El Alaoui, F. Z. (2023). On the re- Muhammad Adil Khan earned PhD degree in Math-
gional boundary observability of semilinear time- ematics in March 2012 from Abdus Salam School of
fractional systems with Caputo derivative. An In- Mathematical Sciences GC University Lahore Pak-
ternational Journal of Optimization and Control: istan. He is working as an Professor and chairman
164

