Page 170 - IJOCTA-15-1
P. 170

J. Khan, M. Adil Khan, S. Sarwar / IJOCTA, Vol.15, No.1, pp.155-165 (2025)

            [26] Iqbal, A., Khan, M. A. Ullah, S., Chu, Y. M. &   Theories & Applications (IJOCTA), 13(2), 161-
                Kashuri, A. (2018). Hermite-Hadamard type in-     170. https://doi.org/10.11121/ijocta.2023
                equalities pertaining conformable fractional inte-  .1286
                grals and their applications. AIP Advances, 8(7),  [37] Sene, N. (2022). Theory and applications of new
                075101. http://dx.doi.org/10.1063/1.50319         fractional-order chaotic system under Caputo op-
                54                                                erator. An International Journal of Optimization
            [27] Khurshid, Y., Khan, M. A., & Chu, Y. M. (2020).  and Control: Theories & Applications (IJOCTA),
                Ostrowski type inequalities involving conformable  12(1), 20-38. https://doi.org/10.11121/ijo
                integrals via preinvex functions, AIP Advances,   cta.2022.1108
                                                                                ˙
                                                                          ˙
                10(5), 055204. http://dx.doi.org/10.1063/5    [38] Set, E., Iscan, I., Sarikaya, M. Z., & Ozdemir,
                .0008964                                          M. E. (2015). On new inequalities of Hermite-
            [28] Khan, M. A., Khurshid, Y., Du, T. S., & Chu, Y.  Hadamard-Fejer type for convex functions via
                M. (2018). Generalization of Hermite-Hadamard     fractional integrals. Applied Mathematics and
                type inequalities via conformable fractional inte-  Computation, 259, 875-881. http://dx.doi.o
                grals. Journal of Function Spaces, 2018, 5357463.  rg/10.1016/j.amc.2015.03.030.
                http://dx.doi.org/10.1155/2018/5357463        [39] Li, Y., Samraiz, M., Gul, A., Vivas-Cortez, M.,
            [29] Iqbal, A., Khan, M. A., Ullah, S. & Chu, Y. M.   & Rahman, G. (2022). Hermite-Hadamard frac-
                (2020). Some new Hermite-Hadamard-type in-        tional integral inequalities via Abel-Gontscharoff
                equalities associated with conformable fractional  Green’s function. Fractal and Fractional, 12(3),
                integrals and their applications. Journal of Func-  126. http://dx.doi.org/10.3390/fractalfr
                tion Spaces, 2020, 9845407. http://dx.doi.org     act6030126
                /10.1155/2020/9845407                         [40] Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N.
            [30] Iqbal, A., Khan, M. A., Suleman, M., & Chu, Y.   (2013). Hermite-Hadamard’s inequalities for frac-
                M. (2020). The right Riemann-Liouville fractional  tional integrals and related fractional inequalities.
                Hermite-Hadamard type inequalities derived from   Mathematical and Computer Modelling, 57 (9),
                Green’s function. AIP Advances, 10(4), 045032.    2403- 2407. http://dx.doi.org/10.1016/j.m
                http://dx.doi.org/10.1063/1.5143908               cm.2011.12.048
                                                                        ˙
                                                                  ˙
            [31] Khan, M. B., Noor, M. A., Abdullah, L., & Chu,  [41] I¸scan, I., (2015). Hermite-Hadamard-Fejer type
                Y. M. (2021). Some new classes of preinvex fuzzy-  inequalities for convex functions via fractional in-
                interval-valued functions and inequalities. Inter-  tegrals. Studia Universitatis Babes-Bolyai Mathe-
                national Journal of Computational Intelligence    matica, 60 (3), 355-366. https://doi.org/10.4
                Systems, 14(1), 1403-1418. http://dx.doi.org      8550/arXiv.1404.7722
                /10.2991/ijcis.d.210409.001                   [42] Khan, M. A., Anwar, S., Khalid, S., Mohammed,
            [32] Khan, M. B., Noor, M. A., Noor, K. I., &         Z., & Sayed, M. M. (2021).    Inequalities of
                Chu, Y. M. (2021). Higher-order strongly prein-   the type Hermite-Hadamard-Jensen-Mercer for
                vex fuzzy mappings and fuzzy mixed variational-   strong convexity. Mathematical Problems in En-
                like inequalities. International Journal of Com-  gineering, 2021, 5357463. http://dx.doi.org/1
                putational Intelligence Systems, 14(1), 1856-1870.  0.1155/2021/5386488
                http://dx.doi.org/10.2991/ijcis.d.21061       [43] Dragomir, S. S. & Agarwal, R.P. (1998). Two
                6.001                                             inequalities of differentiable mappings and ap-
            [33] Kalsoom, H., Rashid, S., Idrees, M., Saf-        plications to special means of real numbers and
                dar, F., Akram, S., Baleanu, D. & Chu, Y.         Trapezoidal formula . Applied Mathematics Let-
                M. (2020). Post quantum integral inequalities     ters, 11(5), 91-95. http://dx.doi.org/10.1016
                of Hermite-Hadamard-type associated with co-      /S0893-9659(98)00086-X
                ordinated higher-order generalized strongly pre-
                invex and quasi-pre-invex mappings. Symmetry,  Jamroz Khan completed his MS Mathematics from
                12(3), 443. http://dx.doi.org/10.3390/sym12   the Department of Basic Sciences at the University of
                030443                                        Engineering and Technology, Peshawar, Pakistan, in
            [34] Mercer, A. (2003). A variant of Jensen’s inequal-  2012. He obtained his PhD from the Department of
                ity. Journal of Inequalities in Pure and Applied  Mathematics at the University of Peshawar, Pakistan.
                Mathematics, 4(4), 73. http://eudml.org/doc/  He is currently serving as an Associate Professor of
                123826.                                       Mathematics in the KPK Higher Education Depart-
            [35] Khan, M. A., & Peˇcari´c, J. (2020). New refine-  ment, Pakistan. His research interests include math-
                ments of the Jensen-Mercer inequality associated  ematical inequalities, the theory of convex functions,
                to positive n-tuples. Armenian Journal of Math-  information theory, and fractional calculus.
                ematics, 12(4), 1-4. http://dx.doi.org/10.52     https://orcid.org/0000-0002-5438-5829
                737/18291163-2020.12.4-1-12
            [36] Zguaid, K., & El Alaoui, F. Z. (2023). On the re-  Muhammad Adil Khan earned PhD degree in Math-
                gional boundary observability of semilinear time-  ematics in March 2012 from Abdus Salam School of
                fractional systems with Caputo derivative. An In-  Mathematical Sciences GC University Lahore Pak-
                ternational Journal of Optimization and Control:  istan. He is working as an Professor and chairman
                                                           164
   165   166   167   168   169   170   171   172   173   174   175