Page 168 - IJOCTA-15-1
P. 168

J. Khan, M. Adil Khan, S. Sarwar / IJOCTA, Vol.15, No.1, pp.155-165 (2025)
                  ακ(v − u)                                        ακ(v − u)
               ≤          2  N 1 (α, κ, p)                       ≤         2  N 1 (α, κ, p)
                   (α + κ)                                          (α + κ)

                                                                                                        1
                                                                                     q
                                                                                                       q



                                                                 ×             ′                 ′     q

                                                                      N 2 (α, κ) ω (u) + N 3 (α, κ) ω (v)
                                   q
                                                      q
                                                ′
                              ′



               ×    N 2 (α, κ) ω (u) + N 3 (α, κ) ω (v)   1 q


                                                                                                        !
                                                                                                      1
                                                                                                    q
                                                                                  q
                                                                             ′
                                                                                               ′



                                                                 + L 4 (α, κ) ω (u) + L 5 (α, κ) ω (v)   q  .

                                                      !
                                                    1
                                 q
                                              ′
                            ′



               + L 4 (α, κ) ω (u) + L 5 (α, κ) ω (v)  q  q   Remark 4. Substituting α = κ = 1, u = δ 1 and

                                                              v = δ 2 in (18), we obtain
                                                       (18)               Z  δ 2
                                                                     1                 ω(δ 1 ) + ω(δ 2 )
            holds, where                                                      ω(s)ds −
                                                                                             2
                                                                    δ 2 − δ 1
                                                                            δ 1
                                                                                                    q
                                       1                                             q           1
                        Z                                                         ′           ′       q
                            1   α   p  p            α
            N 1 (α, κ, p) =  t κ  −1  dt  , N 2 (α, κ) =  ,     ≤  δ 2 − δ 1  ω (δ 1 ) + 3 ω (δ 2 )
                           0                        2(α + κ)            4                4          
                                                                                            q
                       α(α + 2κ)            2α + κ                       ′    q     ′     1 q !
            N 3 (α, κ) =        , N 4 (α, κ) =     ,                   3 ω (δ 1 ) + 2 ω (δ 2 )



                       2(α + κ)            2(α + κ)
                                                                   +                            .
                                                                                  4
                         κ
            N 5 (α, κ) =    .
                       α + κ                                  Acknowledgments
                                                              None.
            Proof. Applying H¨older’s inequality in (17), we  Funding
            have
                                                              None.
                     α
                     −1        2
             (α + κ) κ  Γ κ (α) α  α,κ
                                α J                          Conflict of interest
                        α            αu+κv + ω(v)
                              κ κ (     )
                 (v − u) κ           α+κ
                                                              The authors declare that they have no conflict of

                 κ    α,κ             αω(u) + κω(v)
             +   α   J  αu+κv − ω(u) −                       interest regarding the publication of this article.
               α κ −1  (  α+κ  )           α + κ
               ακ(v − u)                                      Author contributions
             ≤
                (α + κ) 2
                                                              Conceptualization: Muhammad Adil Khan
                          1                     q   1
             Z
                 1    p        αt          αt         q     Formal analysis: Sana Sarwar
                   α      p   ′
                  t κ  −1  dt  ω  u + (1 −   )v    dt
                               α + κ       α + κ            Methodology: Muhammad Adil Khan
                0
                            1                      q   1  Supervision: Muhammad Adil Khan
                Z
                   1   α   p  p    κt        κt       q
                               ω
             +      t κ  −1  dt   ′  (1 −  )u + (  )v    dt  .  Writing – original draft: Jamroz Khan
                                     α + κ    α + κ
                  0
                                                              Writing – review & editing: Sana Sarwar
                    ′ q
            Since |ω | is convex, therefore
                       α                                      Availability of data
                        −1        2
                (α + κ) κ  Γ κ (α) α  α,κ
                                   α J  αu+κv + ω(v)
                           α
                    (v − u) κ           α+κ
                                 κ κ (     )                 Not applicable.


                    κ    α,κ             αω(u) + κω(v)
                +   α  J  αu+κv − ω(u) −                     References
                  α κ  −1  (  α+κ  )          α + κ
                                       1                      [1] Peˇcari´c, J., Proschan, F. & Tong, Y. L. (1992).
               ακ(v − u)    1   α   p  p
                        Z
             ≤               t κ  −1  dt                       Convex Functions, Partial Orderings, and Statis-
                (α + κ) 2  0                                      tical Applications. Academic Press Inc. https:
                                                          1
                 1                   1
               Z                  Z                              //doi.org/10.1016/s0076-5392%2808%29x61
                    αt         q          αt         q  q
                           ′
                                                   ′
                        dt ω (u) +    (1 −      )dt ω (v)        62-4

                   α + κ                  α + κ
                0                   0                          [2] Zhao, T. H., Wang, M. K., & Chu, Y. M. (2021).
                Z  1    κt                                     Monotonicity and convexity involving generalized
                                ′
             +     (1 −      )dt ω (u)  q                        elliptic integral of the first kind. Revista de la Real
                 0     α + κ
                                 1  !                            Academia de Ciencias Exactas, Fysicas y Natu-
               Z  1  κt        q  q
                          ′
             +         dt ω (v)                                  rales (Espana), 115(2), 1-13. http://dx.doi.o
                0  α + κ                                          rg/10.1007/s13398-020-00992-3
                                                           162
   163   164   165   166   167   168   169   170   171   172   173