Page 205 - IJOCTA-15-1
P. 205
Key drivers of volatility in BIST100 firms using machine learning segmentation
27–48. https://doi.org/10.47747/ijfr.v3 to calculate stock market volatility. International
i1.659 Journal of Mathematics Trends and Technology,
[18] Sutrisno, B. (2020). The determinants of stock 57(4), 220-224. https://doi.org/10.14445/2
price volatility in Indonesia. Economic Analysis 2315373/IJMTT-V57P531
Journal, 3(1), 73-79. https://doi.org/10.324 [32] Ou, C., Frausto-Sol´ıs, J., & V´azquez-Rodarte, I.
93/eaj.v3i1.y2020.p73-79 (2015). Volatility forecasting using support vector
[19] Sun, Y., Liu, B., & Prodromou, T. (2021). The regression and a hybrid genetic algorithm. Com-
determinants of the COVID-19 related stock price puting in Economics and Finance, 45(1), 111-133.
overreaction and volatility. Studies in Economics https://doi.org/10.1007/S10614-013-941
and Finance. https://doi.org/10.1108/SEF-0 1-X
8-2021-0330 [33] Santamar´ıa-Bonfil, G., Frausto-Sol´ıs, J., &
[20] Van der Ploeg, A. P. C. (2004). Multifactor V´azquez-Rodarte, I. (2015). Volatility forecasting
volatility models: Evidence from stock and op- using support vector regression and a hybrid ge-
tion markets. netic algorithm. Computing in Economics and Fi-
[21] Ghosh, I., & Datta Chaudhuri, T. (2016). Under- nance, 45(1), 111-133. https://doi.org/10.100
standing and forecasting stock market volatility 7/S10614-013-9411-X
through wavelet decomposition, statistical learn- [34] Rekabsaz, N., Lupu, M., Baklanov, A., D¨ur, A.,
ing and econometric methods. SSRN Electronic Andersson, L., & Hanbury, A. (2017). Volatility
Journal. https://doi.org/10.2139/ssrn.293 prediction using financial disclosures sentiments
0876 with word embedding-based IR models. Proceed-
[22] Situm, M. (2010). Time series volatility forecast- ings of the 55th Annual Meeting of the Asso-
ing using linear regression and GARCH. SSRN ciation for Computational Linguistics, 157–164.
Electronic Journal. https://doi.org/10.2139/ https://doi.org/10.18653/v1/P17-1157
ssrn.1549385 [35] Douglas, K., Ziegelmann, F. A., & dos Santos,
[23] Popovici, O. C. (2015). A volatility analysis of the F. A. (2014). Volatility forecasting via MIDAS,
euro currency and the bond market. Economic HAR and their combination: An empirical com-
Computation and Economic Cybernetics Studies parative study for IBOVESPA. Journal of Fore-
and Research, 49(1), 67–79. casting, 33(3), 192–207. https://doi.org/10.1
[24] Amiram, D., Cserna, B., & Levy, A. (2016). 002/for.2287
Volatility, liquidity, and liquidity risk. SSRN Elec- [36] Burtniak, I., & Suduk, N. (2022). Model of deter-
tronic Journal. https://doi.org/10.2139/ssrn mining stock market volatility. Visnyk Khmelnyt-
.2618424 skoho Natsionalnoho Universytetu, 302(1), 316-
˙
[25] Nur, T., Ege, I., & Topalo˘glu, E. E. (2023). 320. https://doi.org/10.31891/2307-5740-2
The moderator role of managerial overconfidence 022-302-1-53
in the relationship between r&d volatility and [37] Arevalo, J. L. S., de Souza, G. M., & Meurer, R.
firm value: An application in borsa istanbul. M. (2020). The Brazilian stock market indicator:
Akademik Ara¸stırmalar ve C¸alı¸smalar Dergisi Determinants to measure variation and direction.
(AKAD), 15(28), 1-11. https://doi.org/10.2 International Journal of Statistics and Manage-
0990/kilisiibfakademik.1232263 ment Systems, 3(5), 48–59. https://doi.org/10
[26] Ikizlerli, D. (2022). The relation between trad- .51386/25815946/IJSMS-V3I5P105
ing volume and return volatility: Evidence from [38] Mehmood, A., Ullah, M. H., & Sabeeh, N. U.
borsa istanbul. Business and Economics Research (2019). Determinants of stock price volatility:
Journal, 4. https://doi.org/10.20409/berj. Evidence from the cement industry. Accounting,
2022.392 5(4), 145–152. https://doi.org/10.5267/j.ac
[27] Bulut, E. (2024). Sectoral volatility in borsa is- .2019.02.002
tanbul: A garch-based comparative analysis. Ahi [39] Badshah, I. (2013). Quantile regression analysis
¨
Evran Universitesi Sosyal Bilimler Enstit¨us¨u Der- of the asymmetric return-volatility relation. Jour-
gisi, 10(2), 507-522. https://doi.org/10.31592 nal of Futures Markets, 33(3), 235–265. https:
/aeusbed.1355079 //doi.org/10.1002/fut.21551
˙
[28] Kaya, A., & Yarba¸sı, I. Y. (2021). Forecasting [40] Padmakumari, L., & Maheswaran, S. (2016). A
of volatility in stock exchange markets by ms- regression-based approach to capturing the level
garch approach: An application of borsa istanbul. dependence in the volatility of stock returns.
Ekonomi, Politika & Finans Ara¸stırmaları Der- Asian Economic and Financial Review, 6(12),
gisi. https://doi.org/10.30784/epfad.740815 706-718. https://doi.org/10.18488/journ
[29] Adam, K., Marcet, A., & Nicolini, J. P. (2008). al.aefr/2016.6.12/102.12.706.718
Stock market volatility and learning. Research [41] Sen, R. (2009). Functional data analysis for
Papers in Economics. volatility. SSRN Electronic Journal.
[30] De Lepper, M. R. (2016). Predictive analysis for [42] Zhang, C. (2019). Continuous-time volatility re-
financial volatility. gression in large panels. SSRN Electronic Journal.
[31] Smith, T. A., Caligiuri, A., & Montana, J. R. https://doi.org/10.2139/ssrn.3385804
(2018). Using a multiple linear regression model
199

