Page 205 - IJOCTA-15-1
P. 205

Key drivers of volatility in BIST100 firms using machine learning segmentation

                27–48. https://doi.org/10.47747/ijfr.v3           to calculate stock market volatility. International
                i1.659                                            Journal of Mathematics Trends and Technology,
            [18] Sutrisno, B. (2020). The determinants of stock   57(4), 220-224. https://doi.org/10.14445/2
                price volatility in Indonesia. Economic Analysis  2315373/IJMTT-V57P531
                Journal, 3(1), 73-79. https://doi.org/10.324  [32] Ou, C., Frausto-Sol´ıs, J., & V´azquez-Rodarte, I.
                93/eaj.v3i1.y2020.p73-79                          (2015). Volatility forecasting using support vector
            [19] Sun, Y., Liu, B., & Prodromou, T. (2021). The    regression and a hybrid genetic algorithm. Com-
                determinants of the COVID-19 related stock price  puting in Economics and Finance, 45(1), 111-133.
                overreaction and volatility. Studies in Economics  https://doi.org/10.1007/S10614-013-941
                and Finance. https://doi.org/10.1108/SEF-0        1-X
                8-2021-0330                                   [33] Santamar´ıa-Bonfil,  G.,  Frausto-Sol´ıs,  J.,  &
            [20] Van der Ploeg, A. P. C. (2004). Multifactor      V´azquez-Rodarte, I. (2015). Volatility forecasting
                volatility models: Evidence from stock and op-    using support vector regression and a hybrid ge-
                tion markets.                                     netic algorithm. Computing in Economics and Fi-
            [21] Ghosh, I., & Datta Chaudhuri, T. (2016). Under-  nance, 45(1), 111-133. https://doi.org/10.100
                standing and forecasting stock market volatility  7/S10614-013-9411-X
                through wavelet decomposition, statistical learn-  [34] Rekabsaz, N., Lupu, M., Baklanov, A., D¨ur, A.,
                ing and econometric methods. SSRN Electronic      Andersson, L., & Hanbury, A. (2017). Volatility
                Journal. https://doi.org/10.2139/ssrn.293         prediction using financial disclosures sentiments
                0876                                              with word embedding-based IR models. Proceed-
            [22] Situm, M. (2010). Time series volatility forecast-  ings of the 55th Annual Meeting of the Asso-
                ing using linear regression and GARCH. SSRN       ciation for Computational Linguistics, 157–164.
                Electronic Journal. https://doi.org/10.2139/      https://doi.org/10.18653/v1/P17-1157
                ssrn.1549385                                  [35] Douglas, K., Ziegelmann, F. A., & dos Santos,
            [23] Popovici, O. C. (2015). A volatility analysis of the  F. A. (2014). Volatility forecasting via MIDAS,
                euro currency and the bond market. Economic       HAR and their combination: An empirical com-
                Computation and Economic Cybernetics Studies      parative study for IBOVESPA. Journal of Fore-
                and Research, 49(1), 67–79.                       casting, 33(3), 192–207. https://doi.org/10.1
            [24] Amiram, D., Cserna, B., & Levy, A. (2016).       002/for.2287
                Volatility, liquidity, and liquidity risk. SSRN Elec-  [36] Burtniak, I., & Suduk, N. (2022). Model of deter-
                tronic Journal. https://doi.org/10.2139/ssrn      mining stock market volatility. Visnyk Khmelnyt-
                .2618424                                          skoho Natsionalnoho Universytetu, 302(1), 316-
                               ˙
            [25] Nur, T., Ege, I., & Topalo˘glu, E. E. (2023).    320. https://doi.org/10.31891/2307-5740-2
                The moderator role of managerial overconfidence   022-302-1-53
                in the relationship between r&d volatility and  [37] Arevalo, J. L. S., de Souza, G. M., & Meurer, R.
                firm value: An application in borsa istanbul.     M. (2020). The Brazilian stock market indicator:
                Akademik Ara¸stırmalar ve C¸alı¸smalar Dergisi    Determinants to measure variation and direction.
                (AKAD), 15(28), 1-11. https://doi.org/10.2        International Journal of Statistics and Manage-
                0990/kilisiibfakademik.1232263                    ment Systems, 3(5), 48–59. https://doi.org/10
            [26] Ikizlerli, D. (2022). The relation between trad-  .51386/25815946/IJSMS-V3I5P105
                ing volume and return volatility: Evidence from  [38] Mehmood, A., Ullah, M. H., & Sabeeh, N. U.
                borsa istanbul. Business and Economics Research   (2019). Determinants of stock price volatility:
                Journal, 4. https://doi.org/10.20409/berj.        Evidence from the cement industry. Accounting,
                2022.392                                          5(4), 145–152. https://doi.org/10.5267/j.ac
            [27] Bulut, E. (2024). Sectoral volatility in borsa is-  .2019.02.002
                tanbul: A garch-based comparative analysis. Ahi  [39] Badshah, I. (2013). Quantile regression analysis
                      ¨
                Evran Universitesi Sosyal Bilimler Enstit¨us¨u Der-  of the asymmetric return-volatility relation. Jour-
                gisi, 10(2), 507-522. https://doi.org/10.31592    nal of Futures Markets, 33(3), 235–265. https:
                /aeusbed.1355079                                  //doi.org/10.1002/fut.21551
                                     ˙
            [28] Kaya, A., & Yarba¸sı, I. Y. (2021). Forecasting  [40] Padmakumari, L., & Maheswaran, S. (2016). A
                of volatility in stock exchange markets by ms-    regression-based approach to capturing the level
                garch approach: An application of borsa istanbul.  dependence in the volatility of stock returns.
                Ekonomi, Politika & Finans Ara¸stırmaları Der-    Asian Economic and Financial Review, 6(12),
                gisi. https://doi.org/10.30784/epfad.740815       706-718. https://doi.org/10.18488/journ
            [29] Adam, K., Marcet, A., & Nicolini, J. P. (2008).  al.aefr/2016.6.12/102.12.706.718
                Stock market volatility and learning. Research  [41] Sen, R. (2009). Functional data analysis for
                Papers in Economics.                              volatility. SSRN Electronic Journal.
            [30] De Lepper, M. R. (2016). Predictive analysis for  [42] Zhang, C. (2019). Continuous-time volatility re-
                financial volatility.                             gression in large panels. SSRN Electronic Journal.
            [31] Smith, T. A., Caligiuri, A., & Montana, J. R.    https://doi.org/10.2139/ssrn.3385804
                (2018). Using a multiple linear regression model
                                                           199
   200   201   202   203   204   205   206   207   208   209   210