Page 29 - IJOCTA-15-1
P. 29
Significance of stochastic programming in addressing production planning under uncertain demand...
[16] C¸avga, S. H., & Aydin, N. (2023). Stochastic goal American Society of Mechanical Engineers.
programming for the nurse scheduling problem
with uncertain demand. GMBD, 9(3), 490-507.
https://doi.org/10.30855/gmbd.0705082
[26] Malakov, I., & Zaharinov, V. (2021). Choos-
[17] Kleywegt, A. J., Shapiro, A., & Homem-
ing the optimal size range for the ”pipe clamp”
de-Mello, T. (2002). The sample aver-
product. Recent Advances in Soft Comput-
age approximation method for stochas-
ing and Cybernetics. 197-213. https://do
tic discrete optimization. SIAM Journal
i.org/10.1007/978- 3- 030- 61659- 5_1
on Optimization, 12(2), 479-502. h t t p s :
7
//doi.org/10.1137/S1052623499363220
[27] Ozt¨urk, B. (2019). Prin¸c boru ba˘glantı elemanının
[18] Kafali, M., Aydin, N., Gen¸c, Y., & C¸elebi, seri ¨uretim enerji t¨uketiminde optimizasyon.
U. B. (2022). A two-stage stochastic model Technological Applied Sciences (NWSATAS),
for workforce capacity requirement in ship- 14(3), 68-79. http://dx.doi.org/10.12739/NW
building. Journal of Marine Engineering SA.2019.14.3.2A0170
¨
& Technology, 21(3), 146-158. h t t p s : [28] Oz¨ulk¨u, D., Ka¸ctıo˘glu, S. (2019). Uretim
//doi.org/10.1080/20464177.2019.1704977 planlamada bulanık do˘grusal program-
lama y¨ontemi: metal sekt¨or¨unde bir uygu-
[19] Z., & Aydın, N. (2022). A stochastic model
˙
¨
lama. Istanbul Ticaret Universitesi Fen
for facility locations using the priority of fuzzy
Bilimleri Dergisi, 22(43), 67-93. h t t p s :
AHP. Sigma Journal of Engineering and Natural
//doi.org/10.55071/ticaretfbd.1149499
Sciences, 40(3), 649-662.
[29] Gulsun, B., Tuzkaya, G., Tuzkaya, U. R., & Onut,
[20] Kucukkoc, I. (2023). Scheduling of distributed S. (2009). An aggregate production planning
additive manufacturing machines considering strategy selection methodology based on linear
carbon emissions.An International Journal of physical programming. International Journal of
Optimization and Control: Theories & Ap- Industrial Engineering, 16(2), 2009, 135-146.
plications (IJOCTA), 14(1), 20-31. h t t p s : [30] Mukherjee, I., Ray, P. K., Tuzkaya, U. R.
/ / d o i . o r g / 1 0 . 1 1 1 2 1 / i j o c t a . 1 4 44 (2006). A review of optimization techniques
in metal cutting processes. Computers & In-
dustrial Engineering, 50(1-2), 15-34. https:
[21] Ersoy, B., Da¸sba¸sı, B., & Aslan, E. (2023).
//doi.org/10.1016/j.cie.2005.10.001
Mathematical modelling of fiber optic cable with [31] Nystr¨om, D., S¨oderstr¨om, P. (2009). Productivity
an electro-optical cladding by incommensurate increase valve and pipe assembly: An investiga-
fractional-order differential equations. An Inter- tion of how to improve the manufacturing process
national Journal of Optimization and Control: in a large variant production environment. BSc
Theories & Applications (IJOCTA), 14(1), 50- Thesis. Chalmers University of Technology.
61. https://doi.org/10.11121/ijocta.1369 [32] Toksarı, M. D., & Erol, U. (2017). Chance-
constrained approach for production-distribution
problem with stochastic demand and waste rates
[22] Karagoz, S., Aydin, N., & Simic, V. (2022).
in supply chain management. Erciyes University
A novel stochastic optimization model for re-
Journal of Science, 33(2), 102-115.
verse logistics network design of end-of-life ve-
[33] Sarit, M., Mishra, V., & Kundu, S. (2023). A
hicles: A case study of Istanbul. Environmental
Novel Approach With Monte-Carlo Simulation
Modeling & Assessment, 27(4), 599-619. https:
And Hybrid Optimization Approach For Inven-
//doi.org/10.1007/s10666-022-09834-5
tory Management With Stochastic Demand.Arxiv
Preprint, Arxiv:2310.01079.
[23] Aydin, N. (2012). Sampling based progressive [34] Atalay, K. D., & Apaydın, A. (2011). Determin-
hedging algorithms for stochastic programming istic equivalents of chance-constrained stochastic
problems. PhD Thesis. Wayne State University. programming problems. Anadolu University of
Sciences & Technology-B: Theoretical Sciences,
1(1).
[24] Aydin, N., Murat, A., & Mordukhovich, B.
[35] Zhang, J., Zhang, L. W., & Wu, Y. (2012). A
S. (2024). Sample intelligence-based progressive
smoothing SAA method for a stochastic math-
hedging algorithms for the stochastic capaci-
ematical program with complementarity con-
tated reliable facility location problem. Artifi-
straints. Applied Mathematics, 57 (5), 477-502. ht
cial Intelligence Review, 57(6), 135. https://
tps://doi.org/10.1007/s10492-012-0028-5
doi.org/10.1007/s10462- 024- 10755-w
[36] Bastin, F., Cirillo, C., & Toint, P. L. (2006).
An adaptive Monte Carlo algorithm for com-
[25] Wiseman, P., & Mayes, A. (2018). A study puting mixed logit estimators. Computational
on dynamic pipe clamp design. Conference Management Science, 3 (1), 55-79. https:
on Pressure Vessels and Piping, Vol. 51630. //doi.org/10.1007/s10287-005-0044-y
23

