Page 53 - IJOCTA-15-1
P. 53

Approximate analytical solutions of fractional coupled Whitham-Broer-Kaup equations . . .


                Analysis in Medicine and Biology, 2(3). https:    https://doi.org/10.11121/ijocta.2023.1
                //doi.org/10.15761/FGNAMB.1000140                 366
            [10] Gour, M. M., Yadav, L. K., Purohit, S. D., &  [20] Sene, N. (2022). Theory and applications of new
                Suthar, D. L. (2023). Homotopy decomposition      fractional-order chaotic system under Caputo op-
                method to analysis fractional hepatitis B virus   erator. An International Journal of Optimization
                infection model. Applied Mathematics in Science   and Control: Theories & Applications (IJOCTA),
                and Engineering, 31(1). https://doi.org/10.1      12(1), 20-38. https://doi.org/10.11121/ijo
                080/27690911.2023.2260075                         cta.2022.1108
            [11] Veeresha, P., & Prakasha, D. G. (2020). An ef-  [21] Kazem, S. (2013). Exact solution of some linear
                ficient technique for two-dimensional fractional  fractional differential equations by Laplace trans-
                order biological population model. International  form. International Journal of Nonlinear Sci-
                Journal of Modeling, Simulation, and Scientific   ences, 16(1), 3-11.
                Computing, 11, 2050005. https://doi.org/10    [22] Kumar, S. (2014). A new analytical modelling for
                .1142/S1793962320500051                           fractional telegraph equation via Laplace trans-
            [12] Sheergojri A., Iqbal P., Agarwal P., & Ozdemir   form. Applied Mathematical Modelling, 38, 3154-
                N. (2022). Uncertainty-based Gompertz growth      3163. https://doi.org/10.1016/j.apm.2013
                model for tumor population and its numeri-        .11.035
                cal analysis. An International Journal of Opti-  [23] Agarwal, G., Yadav, L.K., Albalawi, W., Abdel-
                mization and Control: Theories & Applications     Aty, A.H., Nisar K.S., & Shefeeq, T. (2022).
                (IJOCTA), 12, 137-150. https://doi.org/10.1       Two analytical approaches for space-and time-
                1121/ijocta.2022.1208                             fractional coupled burger’s equations via Elzaki
            [13] Nasrolahpour, H. (2013). A note on fractional    transform. Progress in Fractional Differentiation
                electrodynamics. Communications in Nonlinear      and Applications, 8(1), 177-190. https://doi.or
                Science and Numerical Simulation, 18, 2589-2593.  g/10.18576/pfda/080111
                https://doi.org/10.1016/j.cnsns.2013.01.      [24] Neamaty, A., Agheli, B., & Darzi, R. (2016). Ap-
                005                                               plications of homotopy perturbation method and
            [14] Drapaca, C. S., & Sivaloganathan, S. (2012). A   Elzaki transform for solving nonlinear partial dif-
                fractional model of continuum mechanics. Jour-    ferential equations of fractional order. Journal of
                nal of Elasticity, 107, 105-123. https://doi.or   Nonlinear Evolution Equations and Applications,
                g/10.1007/s10659-011-9346-1                       6, 91-104.
            [15] Kumar, D., Seadwy, A. R., & Joarder, A. K.   [25] Yang, X. J. (2016). A new integral transform
                (2018). Modified kudryashov method via new ex-    method for solving steady heat-transfer problem.
                act solutions for some conformable fractional dif-  Thermal Science, 20, 639-642. https://doi.or
                ferential equations arising in mathematical biol-  g/10.2298/TSCI16S3639Y
                ogy. Chinese Journal of Physics, 56(1), 75-85. ht  [26] Aboodh, K.S. (2013). The new integral transform
                tps://doi.org/10.1016/j.cjph.2017.11.020          ”Aboodh Transform”. Global Journal of Pure and
            [16] Baleanu, D., Wu, G. C., & Zeng, S. D. (2017).    Applied Mathematics, 9(1), 35-43.
                Chaos analysis and asymptotic stability of gen-  [27] Kili¸cman, A., & Gadain, H. E. (2010). On the
                eralized Caputo fractional differential equations.  applications of Laplace and Sumudu transforms.
                Chaos, Solitons & Fractals, 102, 99-105. https:   Journal of the Franklin Institute, 347, 848-862.
                //doi.org/10.1016/j.chaos.2017.02.007             https://doi.org/10.1016/j.jfranklin.2010
            [17] Demirtas, M., & Ahmad, F. (2023). Fractional     .03.008
                fuzzy PI controller using particle swarm opti-  [28] Guo, S. M., Mei, L. Q., Li, Y., & Sun, Y.
                mization to improve power factor by boost con-    F. (2012). The improved fractional sub-equation
                verter, An International Journal of Optimization  method and its applications to the space-time
                and Control:Theories & Applications (IJOCTA),     fractional differential equations in fluid mechan-
                13(2), 205-213. https://doi.org/10.11121/i        ics. Physics Letters A, 376, 407-411. https://do
                jocta.2023.1260                                   i.org/10.1016/j.physleta.2011.10.056
            [18] Tajadodi, H., Jafari, H., & Ncube, M. N. (2022).  [29] Whitham, G. B. (1967). Variational methods and
                Genocchi polynomials as a tool for solving a class  applications to water waves. Proceedings of the
                of fractional optimal control problems, An In-    Royal Society of London. Series A. Mathemat-
                ternational Journal of Optimization and Control:  ical and Physical Sciences, 299, 6-25. https:
                Theories & Applications (IJOCTA), 12(2), 160-     //doi.org/10.1098/rspa.1967.0119
                168. https://doi.org/10.11121/ijocta.2022     [30] Broer, L. J. F. (1975). Approximate equations for
                .1263                                             long water waves. Applied Scientific Research, 31,
            [19] Uzun, P. Y., Uzun, K., & Koca, I. (2023).        377-395. https://doi.org/10.1007/BF004180
                The effect of fractional order mathematical mod-  48
                elling for examination of academic achievement  [31] Kaup, D. J. (1975). A higher-order water-wave
                in schools with stochastic behaviors, An Interna-  equation and the method for solving it. Progress
                tional Journal of Optimization and Control: The-  of Theoretical Physics, 54, 396-408. https://do
                ories & Applications (IJOCTA),13(2), 244-258.     i.org/10.1143/PTP.54.396
                                                            47
   48   49   50   51   52   53   54   55   56   57   58