Page 48 - IJOCTA-15-1
P. 48

L.K. Yadav et.al. / IJOCTA, Vol.15, No.1, pp.35-49 (2025)

                                                              and so on.
                                            2
                                       3
             ω 2 (µ, ξ) = 2 ℏ (1 + ℏ) θ κ 1 csch (κ 1 (µ + ι))  If we set δ = 1 and ℏ = −1, then the solutions of
                                                   2 2
                      × coth (κ 1 (µ + ι))  ξ δ  − 2 ℏ θ κ 1 4  (45) can be written as
                                        Γ(δ+1)
                                                                                      M
                           2
                      ×csch (κ 1 (µ + ι))                                ϑ    (µ, ξ) =  P  ϑ ℓ (µ, ξ) ,
                                  2
                      × 2 + 3csch (κ 1 (µ + ι))   ξ  2δ  ,               (M)         ℓ=0
                                               Γ(2δ+1)                                                   (47)
                                                                                      M
                                                                                      P
            and so on.                                                   ω (M)  (µ, ξ) =  ω ℓ (µ, ξ) .
                                                                                      ℓ=0
            If we set δ = 1 and ℏ = −1, then the solutions of
                                                              When M → ∞, then solutions (47) converges to
            (41) can be written as
                                                              exact solution of (45)
                                     M
                                     P                           ϑ(µ, ξ) = θ − 2κ 1 coth (κ 1 ((µ + ι) − θξ)),
                       ϑ (M)  (µ, ξ) =  ϑ ℓ (µ, ξ),                              2     2
                                    ℓ=0                (43)      ω(µ, ξ) = − 2κ 1 csc h (κ 1 ((µ + ι) − θξ)).
                                     M                                                                   (48)
                                     P
                       ω (M)  (µ, ξ) =  ω ℓ (µ, ξ) .                    Table 2. The absolute error of
                                    ℓ=0
                                                                         ϑ HAST M in comparison with
                                                                                                4
                                                                            34
            When M → ∞, then solutions (43) converges to               ADM ,VIM,   35  and OHAM at
            exact solution of (41)                                      ℏ = −1, ι = 10, θ = 0.005, and
                                                                           κ 1 = 0.10 for example 1
                ϑ(µ, ξ) = θ − κ 1 coth (κ 1 ((µ + ι) − θξ)),   (µ, ξ)  ADM 34  VIM 30  OHAM 4  ϑ HASTM  ϑ HASTM
                               2
                                     2
                ω(µ, ξ) = − κ 1 csc h (κ 1 ((µ + ι) − θξ)).    (0.1, 0.1) 7.10000 × 10 −9  2.77556 × 10 −17  4.8863 × 10 −6  (δ = 0.75)  (δ = 1)
                                                                                           3.2976 × 10 −6
                                                                                                   2.77556 × 10 −17
                                                       (44)    (0.1, 0.3) 6.50000 × 10 −9  2.77556 × 10 −17  8.4857 × 10 −6  4.9784 × 10 −6  2.77556 × 10 −17
                                                                                           5.1896 × 10 −6
                                                                            3.33067 × 10 −16
                                                                                                   3.33067 × 10 −16
                                                               (0.1, 0.5) 5.90000 × 10 −9
                                                                                    1.0335 × 10 −6
                                                               (0.2, 0.1) 2.82000 × 10 −8  2.77556 × 10 −17  4.7120 × 10 −6  3.2131 × 10 −6  2.77556 × 10 −17
                                                               (0.2, 0.3) 2.59000 × 10 −8  4.16334 × 10 −17  8.2675 × 10 −6  4.8503 × 10 −6  4.16334 × 10 −17
                                                               (0.2, 0.5) 2.41000 × 10 −8  3.60882 × 10 −17  1.0069 × 10 −6  5.0562 × 10 −6  3.60882 × 10 −17
            Example 2 If a = 1 and b = 0, then fractional      (0.3, 0.1) 6.33670 × 10 −8  1.38778 × 10 −17  4.5915 × 10 −6  3.1310 × 10 −6  1.38778 × 10 −17
            WBK equation (22) can be rewritten as              (0.3, 0.3) 5.85000 × 10 −8  2.77556 × 10 −17  8.0560 × 10 −6  4.7263 × 10 −6  2.77556 × 10 −17
                                                                            3.19189 × 10 −16
                                                                                           4.9268 × 10 −6
                                                                                    9.8118 × 10 −6
                                                                                                   3.19189 × 10 −16
                                                               (0.3, 0.5) 5.40000 × 10 −8
                                                               (0.4, 0.1) 1.12400 × 10 −7  1.38778 × 10 −17  4.4746 × 10 −6  3.0513 × 10 −6  1.38778 × 10 −17
                                                               (0.4, 0.3) 1.03900 × 10 −7  3.19189 × 10 −16  7.8510 × 10 −6  4.6060 × 10 −6  3.19189 × 10 −16
                                                               (0.4, 0.5) 9.61000 × 10 −8  3.19189 × 10 −16  9.5621 × 10 −6  4.8014 × 10 −6  3.19189 × 10 −16
              C D ϑ (µ, ξ) + ϑ (µ, ξ)  ∂ϑ(µ,ξ)  +  ∂ω(µ,ξ)  = 0,  (0.5, 0.1) 1.75500 × 10 −7  0  4.3613 × 10 −6  2.9740 × 10 −6  0
                  δ
                  ξ                  ∂µ       ∂µ               (0.5, 0.3) 1.62200 × 10 −7  5.55112 × 10 −17  7.6522 × 10 −6  4.4893 × 10 −6  5.55112 × 10 −17
              C D ω (µ, ξ) + ω (µ, ξ)  ∂ϑ(µ,ξ)  + ϑ (µ, ξ)  ∂ω(µ,ξ)  (0.5, 0.5) 1.50100 × 10 −7  3.19189 × 10 −16  9.3199 × 10 −6  4.6798 × 10 −6  3.19189 × 10 −16
                  δ
                  ξ
                                                     ∂µ
                                     ∂µ
                                             3
                                          + ∂ ω(µ,ξ)  = 0,              Table 3. The absolute error of
                                              ∂µ 3                       ω HAST M in comparison with
                                                                                                4
                                                       (45)            ADM, 34  VIM, 35  and OHAM at
            subject to initial conditions                             ℏ = −1, ι = 10, θ = 0.005, and κ 1 =
                                                                             0.10 for example 1.
             ϑ (µ, 0) = θ − 2κ 1 coth [κ 1 (µ + ι)] ,         (µ, ξ)  ADM 34  V IM 4  OHAM 30  ω HASTM  ω HASTM
                                                                                                  (δ = 1)
                                                                                           (δ = 0.75)
                                 2
                            2
             ω (µ, 0) = −2κ 1 csch [κ 1 (µ + ι)] .            (0.1, 0.1) 9.5512 × 10 −10  1.73472 × 10 −18  1.2632 × 10 −6  8.6140 × 10 −7  1.7347 × 10 −18
                                                              (0.1, 0.3) 8.0600 × 10 −10  2.60209 × 10 −17  2.2165 × 10 −6  1.3004 × 10 −6  2.60209 × 10 −17
                                                       (46)   (0.1, 0.5) 6.7700 × 10 −10  1.80411 × 10 −16  2.6998 × 10 −6  1.3558 × 10 −6  1.80411 × 10 −16
                                                              (0.2, 0.1) 3.8210 × 10 −9  3.46945 × 10 −18  1.2242 × 10 −6  8.3477 × 10 −7  3.46945 × 10 −18
                                                              (0.2, 0.3) 3.2240 × 10 −9  2.34188 × 10 −17  2.1480 × 10 −6  1.2602 × 10 −6  2.34188 × 10 −17
                                                              (0.2, 0.5) 2.7060 × 10 −9  1.73472 × 10 −16  2.6163 × 10 −6  1.3139 × 10 −6  1.73472 × 10 −16
                                                              (0.3, 0.1) 8.5970 × 10 −9  3.46945 × 10 −18  1.1866 × 10 −6  8.0917 × 10 −7  3.46945 × 10 −18
            According to Eqs. (33)-(35), we get following re-  (0.3, 0.3) 7.2520 × 10 −9  1.99493 × 10 −17  2.0821 × 10 −6  1.2216 × 10 −6  1.99493 × 10 −17
                                                              (0.3, 0.5) 6.0910 × 10 −9  1.61329 × 10 −16  2.5361 × 10 −6  1.2736 × 10 −6  1.61329 × 10 −16
            sults                                             (0.4, 0.1) 1.5284 × 10 −8  2.60209 × 10 −18  1.1505 × 10 −6  7.8454 × 10 −7  2.60209 × 10 −18
                                                              (0.4, 0.3) 1.2893 × 10 −8  1.73472 × 10 −17  2.0188 × 10 −6  1.1844 × 10 −6  1.73472 × 10 −17
                                                              (0.4, 0.5) 1.0827 × 10 −8  1.52656 × 10 −16  2.4589 × 10 −6  1.2348 × 10 −6  1.52656 × 10 −16
                                                              (0.5, 0.1) 2.3880 × 10 −8  8.67362 × 10 −19  1.1157 × 10 −6  7.6084 × 10 −7  8.67362 × 10 −19
              ϑ 0 (µ, ξ) = θ − 2κ 1 coth (κ 1 (µ + ι)) ,      (0.5, 0.3) 2.0144 × 10 −8  2.08167 × 10 −17  1.9578 × 10 −6  1.1486 × 10 −6  2.08167 × 10 −17
                                                              (0.5, 0.5) 1.6916 × 10 −8
                                                                                    2.3816 × 10 −6
                                                                                                  1.43982 × 10 −16
                                                                           1.43982 × 10 −4
                                                                                           1.1975 × 10 −6
                                    2
                               2
              ω 0 (µ, ξ) = −2 κ 1 csch (κ 1 (µ + ι)) ,                  Table 4. The absolute error of
                                     2
                                2
              ω 1 (µ, ξ) = 2 ℏ θ κ 1 csch (κ 1 (µ + ι))  ξ δ  ,          ϑ HAST M in comparison with
                                                  Γ(δ+1)               ADM, 34  VIM, 35  and OHAM  4  at
                               3
                                     2
              ω 1 (µ, ξ) = 4 ℏ κ 1 θcsch (κ 1 (µ + ι))
                                    ξ δ                                     ℏ = −1, iota = 10, θ =
                × coth (κ 1 (µ + ι))    ,                             0.005, and κ 1 = 0.10 for example 2.
                                  Γ(δ+1)
                                        2
                                             2
              ϑ 2 (µ, ξ) = 2 ℏ (1 + ℏ) θ κ 1 csch (κ 1 (µ + ι))
                                   3
                             2 2
                                         2
                ×   ξ δ  − 4 ℏ θ κ 1 csch (κ 1 (µ + ι))       (µ, ξ)  ADM 34  V IM 30  OHAM 4  ϑ HASTM  ϑ HASTM
                                                                                            (δ = 0.75)
                                                                                                   (δ = 1)
                  Γ(δ+1)                                      (0.1, 0.1) 1.04892 × 10 −4  1.23033 × 10 −4  1.07078 × 10 −4  3.6854 × 10 −5  1.1102 × 10 −16
                                    ξ 2δ                      (0.1, 0.3) 9.64474 × 10 −5  3.69597 × 10 −4  3.04565 × 10 −4  5.2751 × 10 −5  2.2204 × 10 −16
                × coth (κ 1 (µ + ι))    ,                     (0.1, 0.5) 8.88312 × 10 −5  6.16873 × 10 −4  4.81303 × 10 −4  5.6645 × 10 −5  1.3323 × 10 −15
                                  Γ(2δ+1)                     (0.2, 0.1) 4.25408 × 10 −4  1.19869 × 10 −4  1.04388 × 10 −4  3.5906 × 10 −5  0
                                             2
                                        3
              ω 2 (µ, ξ) = 4 ℏ (1 + ℏ) θ κ 1 csch (κ 1 (µ + ι))  (0.2, 0.3) 3.91098 × 10 −4  3.60098 × 10 −4  2.97260 × 10 −4  5.1394 × 10 −5  2.7756 × 10 −16
                                                              (0.2, 0.5) 3.60161 × 10 −4  6.01006 × 10 −4  4.70136 × 10 −4  5.5188 × 10 −5  1.2878 × 10 −15
                                             2 2
                 × coth (κ 1 (µ + ι))  ξ δ  − 4 ℏ θ κ 1 4     (0.3, 0.1) 9.71922 × 10 −4  1.16789 × 10 −4  1.01776 × 10 −4  3.4988 × 10 −5  1.1102 × 10 −16
                                                              (0.3, 0.3) 8.93309 × 10 −4
                                                                                            5.0880 × 10 −5
                                                                                   2.90150 × 10 −4
                                                                           3.50866 × 10 −4
                                                                                                   5.5511 × 10 −17
                                  Γ(δ+1)                      (0.3, 0.5) 8.22452 × 10 −4  5.85610 × 10 −4  4.59590 × 10 −4  5.3776 × 10 −5  1.1112 × 10 −15
                                            2
                      2
                 ×csch (κ 1 (µ + ι)) 2 + 3csch (κ 1 (µ + ι))   (0.4, 0.1) 1.75596 × 10 −3  1.13829 × 10 −4  9.92418 × 10 −5  3.4097 × 10 −5  5.5511 × 10 −17
                                                              (0.4, 0.3) 1.61430 × 10 −3  3.41948 × 10 −4  2.83229 × 10 −4  4.8805 × 10 −5  1.1102 × 10 −16
                     2δ
                ×   ξ    ,                                    (0.4, 0.5) 1.48576 × 10 −3  5.70710 × 10 −4  4.49116 × 10 −4  5.2407 × 10 −5  1.3323 × 10 −15
                                                                           1.10936 × 10 −4
                                                                                            3.3234 × 10 −5
                                                                                   9.67808 × 10 −4
                                                                                                   5.5511 × 10 −17
                                                              (0.5, 0.1) 2.79519 × 10 −3
                  Γ(2δ+1)
                                                              (0.5, 0.3) 2.56714 × 10 −3  3.33274 × 10 −4  2.78492 × 10 −4  4.7569 × 10 −5  0
                                                              (0.5, 0.5) 2.63184 × 10 −3  5.56235 × 10 −4  4.38895 × 10 −4  5.1080 × 10 −5  9.9920 × 10 −16
                                                            42
   43   44   45   46   47   48   49   50   51   52   53