Page 46 - IJOCTA-15-1
P. 46

L.K. Yadav et.al. / IJOCTA, Vol.15, No.1, pp.35-49 (2025)



                                                  h                                     ∗
                                        ∗
                     ∗
               |ϑ − ϑ | ≤ |(ϕ ℓ + ℏ) (ϑ − ϑ ) + ℏS −1  v δ                 (1 − α 1 ) |ϑ − ϑ | ≤ 0,
                                                    s                                    ∗
                                                    ii                   (1 − α 2 ) |ω − ω | ≤ 0.
                     h           ∗      2     2 ∗
                 ×S    ϑ ∂ϑ  − ϑ ∗ ∂ϑ  + b  ∂ ϑ 2 −  ∂ ϑ   ,

                        ∂µ      ∂µ        ∂µ    ∂µ 2
                                                  h                                               ∗
                     ∗
                                        ∗
               |ω − ω | ≤ |(ϕ ℓ + ℏ) (ω − ω ) + ℏS −1  v δ    Since, 0 < α 1 , α 2 < 1, therefore |ϑ − ϑ | = 0 and
                                                     s              ∗                         ∗            ∗
                    h         ∗                             |ω − ω | = 0, which gives ϑ = ϑ and ω = ω .
                                           ∗ ∂ϑ
                ×S ϑ    ∂ω  −  ∂ω  + (ω − ω )
                        ∂µ    ∂µ             ∂µ               This completes the required proof.           □
                               ii
                      2    2  ∗
                 −b  ∂ ω 2 −  ∂ ω   .                        Theorem 2. (Convergence Theorem) Let J 1 :

                     ∂µ     ∂µ 2
                                                       (40)   B 1 → B 1 and J 2 : B 2 → B 2 be mapping (nonlin-
                                                              ear) with Banach spaces B 1 and B 2 . Presume that
                                                                                            ∗
                                                                            ∗
                                                              ∥J 1 (ϑ) − J 1 (ϑ )∥ ≤ α 1 ∥ϑ − ϑ ∥ , ∀ϑ, ϑ ∗  ∈ J 1 ,
            For Shehu transform, we have, by the help of the                     ∗               ∗       ∗
                                                              and ∥J 2 (ω) − J 2 (ω )∥ ≤ α 2 ∥ω − ω ∥ , ∀ω, ω ∈
            convolution theorem,
                                                              J 2 , then according to Banach’s fixed point theo-
                                                              rem, each mapping J 1 and J 2 has a fixed point.
                                            τ           ∗
                   ∗                  ∗    R   ∂ϑ     ∗ ∂ϑ  The sequence corresponding to the solution ob-
             |ϑ − ϑ | ≤ (ϕ ℓ + ℏ) |ϑ − ϑ | + ℏ  ϑ  − ϑ
                                                 ∂µ     ∂µ
                                           0                  tained by the HASTM with ϑ 0 ∈ J 1 and ω 0 ∈ J 2
                                   δ
                            2 ∗
                      2
                     ∂ ϑ  ∂ ϑ   (τ−ζ)                       chosen arbitrarily will converge to fixed point of
                     ∂µ    ∂µ 2   Γ(δ+1)
                 +b   2 −             dζ,
                                                              J 1 and J 2 , respectively and
                                            τ
                   ∗                  ∗     R      ∂ω
             |ω − ω | ≤ (ϕ ℓ + ℏ) |ω − ω | + ℏ  |ϑ
                                                   ∂µ
                                        0   2  2  ∗             ∥ϑ m − ϑ r ∥ ≤  α r 1  ∥ϑ 1 − ϑ 0 ∥ ,
                 − ∂ω  ∗   + (ω − ω )    ∂ ω 2 −  ∂ ω                          1−α 1

                                  ∗ ∂ϑ
                   ∂µ               ∂µ   + b  ∂µ  ∂µ 2              ∥ω m − ω r ∥ ≤  α r 2  ∥ω 1 − ω 0 ∥ .
                × (τ−ζ) δ  dζ,                                                      1−α 2
                  Γ(δ+1)
                                                              Proof. Let    us  consider   (J 1 [η 1 , ∥.∥])  and
            or,                                               (J 2 [η 2 , ∥.∥]) of all continuous functions of η 1 and
                                                              η 2 with the norm ∥g 1 (τ)∥ = max |g 1 (τ)| and
                                                                                             τ∈η 1
                    ∗
                                      ∗
              |ϑ − ϑ | ≤ (ϕ ℓ + ℏ) |ϑ − ϑ |                   ∥g 2 (τ)∥ = max |g 2 (τ)|, respectively. Now, we will


                  τ    ∂ ϑ −ϑ ∗  2                                 τ∈η 2
                          2
                                            ∗
                                       2
                 R                   ∂ (ϑ−ϑ )  (τ−ζ) δ
                     1                                       show that ϑ r and ω r are the Cauchy sequences in
              +ℏ                                      dζ,
                     2    ∂µ     +b   ∂µ 2    Γ(δ+1)
                 0                                          the aforesaid Banach spaces. For that, let
                                             τ        ∗
                    ∗                  ∗     R    ∂(ω−ω )
              |ω − ω | ≤ (ϕ ℓ + ℏ) |ω − ω | + ℏ  |ϑ
                                                    ∂µ
                                             0                         ∥ϑ m − ϑ r ∥ = max |ϑ m − ϑ r | ,

                                  2    ∗    (τ−ζ) δ                                 τ∈η 1
              + (ω − ω )        ∂ (ω−ω )      dζ,

                       ∗ ∂ϑ
                          ∂µ   +b   ∂µ 2    Γ(δ+1)                  ∥ω m − ω r ∥ = max |ω m − ω r | ,
                                                                                     τ∈η 2
            or,
                                                              or,
                                       ∗
                     ∗
               |ϑ − ϑ | ≤ (ϕ ℓ + ℏ) |ϑ − ϑ |                   ∥ϑ m − ϑ r ∥ = max |(ϕ ℓ + ℏ) (ϑ m−1 − ϑ r−1 )
                     1                      ∗    (τ−ζ) δ             h    τ∈η 1 h
                +ℏ     (c + d) λ 1 + bλ 2 |ϑ − ϑ |    dζ,           −1   v δ

                     2                          Γ(δ+1)          +ℏS         S   ϑ m−1  ∂ϑ m−1  − ϑ r−1  ∂ϑ r−1
                     ∗
                                        ∗
               |ω − ω | ≤ (ϕ ℓ + ℏ) |ω − ω |                         2  s     2    ii ∂µ         ∂µ
                                                   δ            +b   ∂ ϑ m−1  −  ∂ ϑ r−1   ,

                                               (τ−ζ)
                                            ∗
                +ℏ ((P 1 λ 1 + C 1 + bλ 2 ) |ω − ω |)  dζ,             ∂µ 2     ∂µ 2
                                               Γ(δ+1)
                                                               ∥ω m − ω r ∥ = max |(ϕ ℓ + ℏ) (ω m−1 − ω r−1 )
                                                                     h    τ∈η 2 h
                                   2

            where, λ 1 =  ∂  , λ 2 =  ∂     ∂ϑ   ≤ C 1 . Using  +ℏS −1  v δ S ϑ  ∂ω m−1  −  ∂ω r−1
                         ∂µ       ∂µ 2 and  ∂µ                          s          ∂µ      ∂µ
            integral mean value, we have                                         ∂ϑ      ∂ ω m−1  ∂ ω r−1  ii
                                                                                                   2
                                                                                          2
                                                                + (ω m−1 − ω r−1 )  − b         −           ,
                                                                                 ∂µ       ∂µ 2     ∂µ 2
                                                              or,
                     ∗
                                       ∗
               |ϑ − ϑ | ≤ (ϕ ℓ + ℏ) |ϑ − ϑ |
                           1                      ∗
                      +ℏ   2  (c + d) λ 1 + bλ 2 |ϑ − ϑ | T 1 ,
                     ∗
                                        ∗
               |ω − ω | ≤ (ϕ ℓ + ℏ) |ω − ω |                   ∥ϑ m − ϑ r ∥ ≤ max {(ϕ ℓ + ℏ) |ϑ m−1 − ϑ r−1 |
                                                  ∗
                                                                            τ∈η 1 h
                      +ℏ ((P 1 λ 1 + C 1 + bλ 2 ) |ω − ω |) T 2 ,   −1  h  v δ      ∂ϑ m−1      ∂ϑ r−1

                                                                +ℏS         S ϑ m−1       − ϑ r−1
                                                                         s            ∂µ           ∂µ
                                                                                  iio
            or,                                                     ∂ ϑ m−1  −  ∂ ϑ r−1   ,
                                                                              2
                                                                     2
                                                                      ∂µ       ∂µ
                                                                +b     2        2
                                                               ∥ω m − ω r ∥ ≤ max {(ϕ ℓ + ℏ) |ω m−1 − ω r−1 |
                                            ∗
                               ∗
                         |ϑ − ϑ | ≤ α 1 |ϑ − ϑ | ,                  −1  h  v δ τ∈η 2 h

                               ∗
                                            ∗

                         |ω − ω | ≤ α 2 |ω − ω | ,              +ℏS      s  S ϑ   ∂ω m−1  −  ∂ω r−1
                                                                                            ∂µ
                                                                                    ∂µ
                                                                                                     iio
                                                                                          2       ∂ ω r−1
                                                                                                   2
                                                                                         ∂ ω m−1

            or,                                                 + (ω m−1 − ω r−1 )  ∂ϑ   + b   ∂µ 2  −  ∂µ 2   .
                                                                                 ∂µ
                                                            40
   41   42   43   44   45   46   47   48   49   50   51