Page 47 - IJOCTA-15-1
P. 47

Approximate analytical solutions of fractional coupled Whitham-Broer-Kaup equations . . .

            For ST, with the help of the convolution theorem,
                                                                              r
            we get                                             ∥ϑ m − ϑ r ∥ ≤ α + α r+1  + .. + α m−1    ∥ϑ 1 − ϑ 0 ∥ ,
                                                                              1
                                                                                   1
                                                                                              1
                                                                  ≤ α r 1  1 + α 1 + .. + α m−r−1    ∥ϑ 1 − ϑ 0 ∥ ,
                                                                                      1
                                                                       h   m−r−1  i
             ∥ϑ m − ϑ r ∥ ≤ max {(ϕ ℓ + ℏ) |ϑ m−1 − ϑ r−1 |       ≤ α r  1−α 1    ∥ϑ 1 − ϑ 0 ∥ .
                          τ∈η 1                                       1   1−α 1
                  τ                               o
                                2
                  R    ∂(ϑ 2  −ϑ r−1 )    2
              +ℏ     1   m−1            ∂ (ϑ m−1 −ϑ r−1 )
                            ∂µ        +b      ∂µ 2
                     2                                      Similarly,
                  0  δ
              × (τ−ζ)  dζ,
                Γ(δ+1)
                                                                                      m−r−1
             ∥ω m − ω r ∥ ≤ max {(ϕ ℓ + ℏ) |ω m−1 − ω r−1 |                     r  1 − α 2
                          τ∈η 2                                  ∥ω m − ω r ∥ ≤ α 2            ∥ω 1 − ω 0 ∥ .
                  τ                                                           1 − α 2
                 R     ∂ω m−1  ∂ω r−1
              +ℏ    ϑ        −        + (ω m−1 − ω r−1 )  ∂ϑ
                          ∂µ      ∂µ                     ∂µ
                                                              As 0 < α 1 , α 2 < 1, so, 1 − α m−r−1  < 1 and
                   2        2            δ                                                   1
                                 o
                 0
                  ∂ ω m−1  −  ∂ ω r−1   (τ−ζ)
                    ∂µ       ∂µ 2   Γ(δ+1)                   1 − α 2     < 1, then we have
              +b     2                   dζ,                      m−r−1
            or,
                                                                       ∥ϑ m − ϑ r ∥ ≤  α r 1  ∥ϑ 1 − ϑ 0 ∥ ,
                                                                                    1−α 1
                                                                                       r
              ∥ϑ m − ϑ r ∥ ≤ max {(ϕ ℓ + ℏ) |ϑ m−1 − ϑ r−1 |           ∥ω m − ω r ∥ ≤  α 2  ∥ω 1 − ω 0 ∥ .
                           τ∈η 1                                                    1−α 2
                  τ
                  R
                     1
              +ℏ      (c + d) λ 1 |ϑ m−1 − ϑ r−1 |
                     2                                        But ∥ϑ 1 − ϑ 0 ∥ < ∞ and ∥ω 1 − ω 0 ∥ < ∞, con-
                  0                     δ                     sequently as m → ∞ than ∥ϑ m − ϑ r ∥ → 0
               +bλ 2 |ϑ m−1 − ϑ r−1 |)}  (τ−ζ)  dζ,
                                    Γ(δ+1)                    and ∥ω m − ω r ∥ → 0.     Hence, the sequence
              ∥ω m − ω r ∥ ≤ max {(ϕ ℓ + ℏ) |ω m−1 − ω r−1 |  {ϑ r } and {ω r } each one is a Cauchy sequence
                           τ∈η 2
                  τ                                           in (J 1 [η 1 , ∥.∥]) and (J 2 [η 2 , ∥.∥]), so these se-
                  R
              +ℏ (P 1 λ 1 |ω m−1 − ω r−1 | + C 1 |ω m−1 − ω r−1 |  quences are convergent. It completes our required
                  0                     δ                     proof.                                       □
               +bλ 1 |ω m−1 − ω r−1 |)}  (τ−ζ)  dζ.
                                    Γ(δ+1)
                                                              6. Applications of fractional WBK
            Next, by using the integral mean value theorem,      equation
            we have
                                                                                            1
                                                              Example 1 If a = 0 and b = , then fractional
                                                                                            2
                                                              WBK equation (22) can be rewritten as
              ∥ϑ m − ϑ r ∥ ≤ max {(ϕ ℓ + ℏ) |ϑ m−1 − ϑ r−1 |
                           τ∈η 1
                     1
                 +ℏ    (c + d) λ 1 |ϑ m−1 − ϑ r−1 |                                  ∂ϑ(µ,ξ)  ∂ω(µ,ξ)
                                                                   δ
                     2                                          C  D ϑ (µ, ξ) + ϑ (µ, ξ)   +
                 +bλ 2 |ϑ m−1 − ϑ r−1 |) T 1 } ,                   ξ                   ∂µ  2   ∂µ
              ∥ω m − ω r ∥ ≤ max {(ϕ ℓ + ℏ) |ω m−1 − ω r−1 |                          + 1 ∂ ϑ(µ,ξ)  = 0,
                                                                                             2
                                                                                        2
                                                                                           ∂µ
                           τ∈η 2
                                                                   δ
                                                                C  D ω (µ, ξ) + ω (µ, ξ)  ∂ϑ(µ,ξ)  + ϑ (µ, ξ)  ∂ω(µ,ξ)
                +ℏ (P 1 λ 1 |ω m−1 − ω r−1 | + C 1                 ξ                   ∂µ              ∂µ
                                                                                          2
                × |ω m−1 − ω r−1 | + bλ 2 |ω m−1 − ω r−1 |) T 2 } ,                   − 1 ∂ ω(µ,ξ)  = 0,
                                                                                        2  ∂µ 2
            or,                                                                                          (41)
                    ∥ϑ m − ϑ r ∥ ≤ α 1 ∥ϑ m−1 − ϑ r−1 ∥ ,     subject to initial conditions
                    ∥ω m − ω r ∥ ≤ α 2 ∥ω m−1 − ω r−1 ∥ .
                                                                    ϑ (µ, 0) = θ − κ 1 coth [κ 1 (µ + ι)] ,
                                                                                 2
                                                                                      2
                                                                    ω (µ, 0) = −κ 1 csch [κ 1 (µ + ι)] .  (42)
            Taking m = r + 1 1 gives,
                                                              According to Eqs. (33)-(35), we get following
                                                              results
                ∥ϑ r+1 − ϑ r ∥ ≤ α 1 ∥ϑ r − ϑ r−1 ∥
                                            r
                    2
                ≤ α ∥ϑ r−1 − ϑ r−2 ∥ ≤ ... ≤ α ∥ϑ 1 − ϑ 0 ∥ ,
                    1
                                            1
                ∥ω r+1 − ω r ∥ ≤ α 2 ∥ω r − ω r−1 ∥            ϑ 0 (µ, ξ) = θ − κ 1 coth (κ 1 (µ + ι)) ,
                                                                                    2
                                                                               2
                                            r
                    2
                ≤ α ∥ω r−1 − ω r−2 ∥ ≤ ... ≤ α ∥ω 1 − ω 0 ∥ .  ω 0 (µ, ξ) = − κ 1 csch (κ 1 (µ + ι)) ,
                    2
                                            2
                                                                                                    δ
                                                                                                   ξ
                                                                                     2
                                                                               2
                                                               ϑ 1 (µ, ξ) = ℏ θ κ 1 csch (κ 1 (µ + ι))  Γ(δ+1) ,
            On using triangular inequality, we have                            3      2
                                                               ω 1 (µ, ξ) = 2 ℏ κ 1 θcsch (κ 1 (µ + ι))
                                                                                            ξ δ
                                                                         × coth (κ 1 (µ + ι))   ,
                                                                                           Γ(δ+1)
                                                                                             2
                                                                                       2
               ∥ϑ m − ϑ r ∥ ≤ ∥ϑ r+1 − ϑ r ∥ + ∥ϑ r+2 − ϑ r+1 ∥  ϑ 2 (µ, ξ) = ℏ (1 + ℏ) θ κ 1 csch (κ 1 (µ + ι))
                                                                                                2
                                                                                     2 2
                                                                                           3
                                    +... + ∥ϑ m − ϑ m−1 ∥ .             ×  ξ δ  − 2 ℏ θ κ 1 csch (κ 1 (µ + ι))
                                                                          Γ(δ+1)
                                                                                            ξ 2δ
            Hence,                                                      × coth (κ 1 (µ + ι))  Γ(2δ+1)  ,
                                                            41
   42   43   44   45   46   47   48   49   50   51   52