Page 133 - IJOCTA-15-2
P. 133
¨
E. Sonu¸c, E. Ozcan / IJOCTA, Vol.15, No.2, pp.311-329 (2025)
6. Talbi EG. Metaheuristics: From Design to Imple- 18. Yuan B, Zhang C, Shao X. A late acceptance hill-
mentation. John Wiley & Sons. 2009. climbing algorithm for balancing two-sided as-
https://doi.org/10.1002/9780470496916 sembly lines with multiple constraints. J Intell
7. Al-Betar MA. β-hill climbing: an exploratory lo- Manuf. 2015;26:159-168.
cal search. Neural Comput Appl. 2017;28(Suppl https://doi.org/10.1007/s10845-013-0770-x
1):153-168. 19. Fonseca GH, Santos HG, Carrano EG. Late ac-
https://doi.org/10.1007/s00521-016-2328-2 ceptance hill-climbing for high school timetabling.
J Sched. 2016;19:453-465.
8. Burke EK, Bykov Y. The late acceptance
https://doi.org/10.1007/s10951-015-0458-5
hill-climbing heuristic. Eur J Oper Res.
2017;258(1):70-78. 20. Bolaji AL A, Bamigbola AF, Shola PB. Late
https://doi.org/10.1016/j.ejor.2016.07.012 acceptance hill climbing algorithm for solving
patient admission scheduling problem. Knowl-
9. Tari S, Basseur M, Go¨effon A. Expansion-based
Based Syst. 2018;145:197-206.
Hill-climbing. Inf Sci. 2023;649, 119635.
https://doi.org/10.1016/j.knosys.2018.01.017
https://doi.org/10.1016/j.ins.2023.119635
21. Erlenkotter D. A dual-based procedure for
10. Burke EK, Bykov Y. The late acceptance hill-
uncapacitated facility location. Oper Res.
climbing heuristic. University of Stirling, Tech.
1978;26(6):992-1009.
Rep. 2012.
https://doi.org/10.1287/opre.26.6.992
11. Alparslan S, Sonu¸c, E.. Solving Static Weapon-
22. Efroymson M, Ray TL. A branch-bound
Target Assignment Problem using Multi-Start
algorithm for plant location. Oper Res.
Late Acceptance Hill Climbing. Curr Trends
1966;14(3):361-368.
Comput Sci Appl. 2024;2(1):23-35.
https://doi.org/10.1287/opre.14.3.361
12. Bazargani M, Lobo FG. Parameter-less late ac- 23. Akinc U, Khumawala BM. An efficient branch
ceptance hill-climbing. In: Proceedings of the and bound algorithm for the capacitated
Genetic and Evolutionary Computation Confer- warehouse location problem. Manag Sci.
ence. 2017; 219-226. 1977;23(6):585-594.
https://doi.org/10.1145/3071178.3071225 https://doi.org/10.1287/mnsc.23.6.585
13. Goerler A, Schulte F, Voß, S. An application 24. Schrage L. Implicit representation of variable up-
of late acceptance hill-climbing to the traveling per bounds in linear programming. In: Compu-
purchaser problem. In: Computational Logistics: tational practice in mathematical programming.
4th International Conference ICCL 2013, Copen- 2009; 118-132. Springer.
hagen, Denmark, September 25-27, 2013. Pro- https://doi.org/10.1007/BFb0120715
ceedings 4 2013; 173-183. Springer.
25. Galv˜ao RD, Raggi LA. A method for solving to
https://doi.org/10.1007/978-3-642-41019-2 1 3
optimality uncapacitated location problems. Ann
14. Ghosh M, Kundu T, Ghosh D, Sarkar R. Feature Oper Res. 1989;18(1):225-244.
selection for facial emotion recognition using late https://doi.org/10.1007/BF02097805
hill-climbing based memetic algorithm. Multimed 26. Hoefer M. Experimental comparison of heuristic
Tools Appl. 2019;78, 25753-25779. and approximation algorithms for uncapacitated
https://doi.org/10.1007/s11042-019-07811-x facility location. In: International Workshop on
15. Turky A, Sabar NR, Sattar A, Song A. Paral- Experimental and Efficient Algorithms. 2003; 165-
lel late acceptance hill-climbing algorithm for the 178. Springer.
google machine reassignment problem. In: AI https://doi.org/10.1007/3-540-44867-5 1 3
2016: Advances in Artificial Intelligence: 29th 27. Monabbati E, Kakhki HT. On a class of subaddi-
Australasian Joint Conference Hobart, TAS, Aus- tive duals for the uncapacitated facility location
tralia, December 5-8, 2016, Proceedings 29 2016; problem. Appl Math 2015;251:118-131.
163-174. Springer International Publishing. https://doi.org/10.1016/j.amc.2014.10.072
https://doi.org/10.1007/978-3-319-50127-7 1 3 28. Sonu¸c, E.. Binary crow search algorithm for the
16. Clay S, Mousin L, Veerapen N, Jourdan L. Clahc- uncapacitated facility location problem. Neural
custom late acceptance hill climbing: First re- Comput Appl. 2021;33(21):14669-14685.
sults on tsp. In: Proceedings of the Genetic and https://doi.org/10.1007/s00521-021-06107-2
Evolutionary Computation Conference Compan- 29. Durgut R, Aydin ME. Adaptive binary artifi-
ion. 2021; 1970-1973. cial bee colony algorithm. Appl Soft Comput.
https://doi.org/10.1145/3449726.3463129 2021;101:107054.
17. Cao VL, Nicolau M, McDermott J. Late- https://doi.org/10.1016/j.asoc.2020.107054
¨
acceptance and step-counting hill-climbing GP for 30. Sonu¸c, E., Ozcan E. An adaptive parallel evo-
anomaly detection. In: Proceedings of the Genetic lutionary algorithm for solving the uncapaci-
and Evolutionary Computation Conference Com- tated facility location problem. Expert Syst Appl.
panion. 2017; 221-222. 2023;224:119956.
https://doi.org/10.1145/3067695.3076091 https://doi.org/10.1016/j.eswa.2023.119956
328

