Page 95 - IJOCTA-15-2
P. 95
¨
M. Yavuz, M. Ozt¨urk, B. Ya¸skıran / IJOCTA, Vol.15, No.2, pp.281-293 (2025)
8. Zhao Y, Sheng Y, Liu X. A Novel Finite Time 20. Liu Z, Han Z, Zhao Z, He W. Modeling and
Sliding Mode Control for Robotic Manipulators. adaptive control for a spatial flexible spacecraft
IFAC Proc Vol. 2014;47(3):7336–7341. with unknown actuator failures. Sci China Inf
https://doi.org/10.3182/20140824-6-ZA- Sci. 2021;64(5):152208.
1003.00135 https://doi.org/10.1007/s11432-020-3109-x
9. Dumlu A. Practical Position Tracking Control of 21. Tutsoy O, Barkana DE. Model free adaptive
a Robotic Manipulator Based on Fractional Order control of the under-actuated robot manipu-
Sliding Mode Controller. Elektr Ir Elektrotech. lator with the chaotic dynamics. ISA Trans.
2018;24(5):19–25. 2021;118:106–115.
https://doi.org/10.5755/j01.eie.24.5.21838 https://doi.org/10.1016/j.isatra.2021.02.006
10. Rahmani M, Rahman MH. Adaptive Neural Net- 22. Joshua Robert J, Senthil Kumar P, Tushar Nair
work Fast Fractional Sliding Mode Control of a S, Sharne Moni DH, Swarneswar B. Fuzzy control
7-DOF Exoskeleton Robot. Int J Control Autom of active suspension system based on quarter car
Syst. 2020;18(1):124–133. model. Mater Today Proc. 2022;66:902–908.
https://doi.org/10.1007/s12555-019-0155-1 https://doi.org/10.1016/j.matpr.2022.04.575
11. Sachan S, Swarnkar P. Intelligent Fractional Or- 23. Kasruddin Nasir AN, Ahmad MA, Tokhi MO.
der Sliding Mode Based Control for Surgical Ro- Hybrid spiral-bacterial foraging algorithm for
bot Manipulator. Electronics, 2023;12(3):729. a fuzzy control design of a flexible manip-
https://doi.org/10.3390/electronics12030729 ulator. J Low Freq Noise Vibr Act Control
12. Zhang S, Li Z, Wang H, Xiong T. Fractional Or- 2022;41(1):340–358.
der Sliding Mode Control Based on Single Param- https://doi.org/10.1177/14613484211035646
eter Adaptive Law for Nano-Positioning of Piezo- ¨ ¨ ˙
24. Ozt¨urk M, Ozkol I. Comparison of modified
electric Actuators. IET Control Theory Appl.
Karnik-Mendel algorithm-based interval type-2
2021;15(10):1422–1437.
ANFIS and type-1 ANFIS. Aircr Eng Aerosp
https://doi.org/10.1049/cth2.12132
Technol. 2021;93(10):1526–1532.
13. Shah MZ, Samar R, Bhatti AI. Guidance of Air https://doi.org/10.1108/AEAT-11-2020-0268
Vehicles: A Sliding Mode Approach. IEEE Trans
25. Jha D, Ahmed A, Kumar S, Roy D. Fuzzy-PID
Control Syst Technol. 2015;23(1):231–244.
and interpolation: a novel synergetic approach to
https://doi.org/10.1109/TCST.2014.2322773
process control. Int J Optim Control Theor Appl.
14. Zhao J, Jiang B, Shi P, Liu H. Adaptive Dy- (IJOCTA) 2024;14(4):355–364.
namic Sliding Mode Control for Near Space Vehi- https://doi.org/10.11121/ijocta.1483
cles Under Actuator Faults. Circ Syst Signal Pro-
26. Ammar MB, Chaabene M, Chtourou Z. Artificial
cess. 2013;32(5):2281–2296.
Neural Network based control for PV/T panel to
https://doi.org/10.1007/s00034-013-9572-9
track optimum thermal and electrical power. En-
15. Dokumaci K, Aydemir MT, Salamci MU. Mod-
ergy Convers Manag. 2013;65:372–380.
eling, PID control and simulation of a rocket
https://doi.org/10.1016/j.enconman.2012.08.003
launcher system. 2014 16th International Power
27. Kurt R. Control of system parameters by estimat-
Electronics and Motion Control Conference and
ing screw withdrawal strength values of particle-
Exposition, , 2014;1283–1288. Antalya, Turkey.
boards using artificial neural network-based sta-
https://doi.org/10.1109/EPEPEMC.2014.6980689
tistical control charts. J Wood Sci. 2022;68(1):64.
16. Muliadi J, Kusumoputro B. Neural Network Con-
https://doi.org/10.1186/s10086-022-02065-y
trol System of UAV Altitude Dynamics and Its
28. Furat M, Eker ˙ I. Experimental Evalua-
Comparison with the PID Control System. J Adv
tion of Sliding-Mode Control Techniques.
Transp. 2018;2018(1):3823201.
https://doi.org/10.1155/2018/3823201 C¸ukurova Univ M¨uhendislik Mimarlık Fak Derg.
2016;27(1):23–37.
17. Alagoz BB, Ates A, Yeroglu C. Auto-tuning
of PID controller according to fractional-order 29. Herrera M, Camacho O, Leiva H, Smith C. An ap-
reference model approximation for DC rotor proach of dynamic sliding mode control for chemi-
control. Mechatronics 2013;23(7):789–797. cal processes. J Process Control. 2020;85:112–120.
https://doi.org/10.1016/j.mechatronics.2013.05.001 https://doi.org/10.1016/j.jprocont.2019.11.008
18. Han J, Yu S, Yi S. Adaptive control for robust 30. Lee H, Utkin VI. Chattering suppression methods
air flow management in an automotive fuel cell in sliding mode control systems. Annu Rev Con-
system. Appl Energy. 2017;190:73–83. trol. 2007;31(2):179–188.
https://doi.org/10.1016/j.apenergy.2016.12.115 https://doi.org/10.1016/j.arcontrol.2007.08.001
19. Chen K, Astolfi A. Adaptive Control for Systems 31. Pisano A, Usai E. Sliding mode control: A survey
With Time-Varying Parameters. IEEE Trans Au- with applications in math. Math Comput Simul.
tom Control. 2021;66(5):1986–2001. 2011;81(5):954–979.
https://doi.org/10.1109/TAC.2020.3046141 https://doi.org/10.1016/j.matcom.2010.10.003
290

