Page 95 - IJOCTA-15-2
P. 95

¨
                          M. Yavuz, M. Ozt¨urk, B. Ya¸skıran / IJOCTA, Vol.15, No.2, pp.281-293 (2025)

              8. Zhao Y, Sheng Y, Liu X. A Novel Finite Time  20. Liu Z, Han Z, Zhao Z, He W. Modeling and
                Sliding Mode Control for Robotic Manipulators.    adaptive control for a spatial flexible spacecraft
                IFAC Proc Vol. 2014;47(3):7336–7341.              with unknown actuator failures. Sci China Inf
                https://doi.org/10.3182/20140824-6-ZA-            Sci. 2021;64(5):152208.
                1003.00135                                        https://doi.org/10.1007/s11432-020-3109-x
              9. Dumlu A. Practical Position Tracking Control of  21. Tutsoy O, Barkana DE. Model free adaptive
                a Robotic Manipulator Based on Fractional Order   control of the under-actuated robot manipu-
                Sliding Mode Controller. Elektr Ir Elektrotech.   lator with the chaotic dynamics. ISA Trans.
                2018;24(5):19–25.                                 2021;118:106–115.
                https://doi.org/10.5755/j01.eie.24.5.21838        https://doi.org/10.1016/j.isatra.2021.02.006
             10. Rahmani M, Rahman MH. Adaptive Neural Net-   22. Joshua Robert J, Senthil Kumar P, Tushar Nair
                work Fast Fractional Sliding Mode Control of a    S, Sharne Moni DH, Swarneswar B. Fuzzy control
                7-DOF Exoskeleton Robot. Int J Control Autom      of active suspension system based on quarter car
                Syst. 2020;18(1):124–133.                         model. Mater Today Proc. 2022;66:902–908.
                https://doi.org/10.1007/s12555-019-0155-1         https://doi.org/10.1016/j.matpr.2022.04.575
             11. Sachan S, Swarnkar P. Intelligent Fractional Or-  23. Kasruddin Nasir AN, Ahmad MA, Tokhi MO.
                der Sliding Mode Based Control for Surgical Ro-   Hybrid spiral-bacterial foraging algorithm for
                bot Manipulator. Electronics, 2023;12(3):729.     a fuzzy control design of a flexible manip-
                https://doi.org/10.3390/electronics12030729       ulator. J Low Freq Noise Vibr Act Control
             12. Zhang S, Li Z, Wang H, Xiong T. Fractional Or-   2022;41(1):340–358.
                der Sliding Mode Control Based on Single Param-   https://doi.org/10.1177/14613484211035646
                eter Adaptive Law for Nano-Positioning of Piezo-  ¨           ¨     ˙
                                                              24. Ozt¨urk M, Ozkol I. Comparison of modified
                electric Actuators. IET Control Theory Appl.
                                                                  Karnik-Mendel algorithm-based interval type-2
                2021;15(10):1422–1437.
                                                                  ANFIS and type-1 ANFIS. Aircr Eng Aerosp
                https://doi.org/10.1049/cth2.12132
                                                                  Technol. 2021;93(10):1526–1532.
             13. Shah MZ, Samar R, Bhatti AI. Guidance of Air     https://doi.org/10.1108/AEAT-11-2020-0268
                Vehicles: A Sliding Mode Approach. IEEE Trans
                                                              25. Jha D, Ahmed A, Kumar S, Roy D. Fuzzy-PID
                Control Syst Technol. 2015;23(1):231–244.
                                                                  and interpolation: a novel synergetic approach to
                https://doi.org/10.1109/TCST.2014.2322773
                                                                  process control. Int J Optim Control Theor Appl.
             14. Zhao J, Jiang B, Shi P, Liu H. Adaptive Dy-      (IJOCTA) 2024;14(4):355–364.
                namic Sliding Mode Control for Near Space Vehi-   https://doi.org/10.11121/ijocta.1483
                cles Under Actuator Faults. Circ Syst Signal Pro-
                                                              26. Ammar MB, Chaabene M, Chtourou Z. Artificial
                cess. 2013;32(5):2281–2296.
                                                                  Neural Network based control for PV/T panel to
                https://doi.org/10.1007/s00034-013-9572-9
                                                                  track optimum thermal and electrical power. En-
             15. Dokumaci K, Aydemir MT, Salamci MU. Mod-
                                                                  ergy Convers Manag. 2013;65:372–380.
                eling, PID control and simulation of a rocket
                                                                  https://doi.org/10.1016/j.enconman.2012.08.003
                launcher system. 2014 16th International Power
                                                              27. Kurt R. Control of system parameters by estimat-
                Electronics and Motion Control Conference and
                                                                  ing screw withdrawal strength values of particle-
                Exposition, , 2014;1283–1288. Antalya, Turkey.
                                                                  boards using artificial neural network-based sta-
                https://doi.org/10.1109/EPEPEMC.2014.6980689
                                                                  tistical control charts. J Wood Sci. 2022;68(1):64.
             16. Muliadi J, Kusumoputro B. Neural Network Con-
                                                                  https://doi.org/10.1186/s10086-022-02065-y
                trol System of UAV Altitude Dynamics and Its
                                                              28. Furat  M,   Eker  ˙ I.  Experimental  Evalua-
                Comparison with the PID Control System. J Adv
                                                                  tion  of  Sliding-Mode  Control  Techniques.
                Transp. 2018;2018(1):3823201.
                https://doi.org/10.1155/2018/3823201              C¸ukurova Univ M¨uhendislik Mimarlık Fak Derg.
                                                                  2016;27(1):23–37.
             17. Alagoz BB, Ates A, Yeroglu C. Auto-tuning
                of PID controller according to fractional-order  29. Herrera M, Camacho O, Leiva H, Smith C. An ap-
                reference model approximation for DC rotor        proach of dynamic sliding mode control for chemi-
                control. Mechatronics 2013;23(7):789–797.         cal processes. J Process Control. 2020;85:112–120.
                https://doi.org/10.1016/j.mechatronics.2013.05.001  https://doi.org/10.1016/j.jprocont.2019.11.008
             18. Han J, Yu S, Yi S. Adaptive control for robust  30. Lee H, Utkin VI. Chattering suppression methods
                air flow management in an automotive fuel cell    in sliding mode control systems. Annu Rev Con-
                system. Appl Energy. 2017;190:73–83.              trol. 2007;31(2):179–188.
                https://doi.org/10.1016/j.apenergy.2016.12.115    https://doi.org/10.1016/j.arcontrol.2007.08.001
             19. Chen K, Astolfi A. Adaptive Control for Systems  31. Pisano A, Usai E. Sliding mode control: A survey
                With Time-Varying Parameters. IEEE Trans Au-      with applications in math. Math Comput Simul.
                tom Control. 2021;66(5):1986–2001.                2011;81(5):954–979.
                https://doi.org/10.1109/TAC.2020.3046141          https://doi.org/10.1016/j.matcom.2010.10.003
                                                           290
   90   91   92   93   94   95   96   97   98   99   100