Page 96 - IJOCTA-15-2
P. 96

Comparison of fractional order sliding mode controllers on robot manipulator

             32. Gokyildirim  A,  Calgan  H,  Demirtas   M.   43. Basci A, Can K, Orman K, Derdiyok A. Tra-
                Fractional-Order sliding mode control of a        jectory Tracking Control of a Four Rotor Un-
                4D memristive chaotic system. J Vib Control.      manned Aerial Vehicle Based on Continuous
                2024;30(7–8):1604–1620.                           Sliding Mode Controller. Elektr Ir Elektrotech.
                https://doi.org/10.1177/10775463231166187         2017;23(3):12–19.
                                                                  https://doi.org/10.5755/j01.eie.23.3.18325
             33. Hua C, Chen J, Guan X. Fractional-order slid-
                ing mode control of uncertain QUAVs with      44. Haridas V, Vivek A. Longitudinal Guidance of
                time-varying state constraints. Nonlinear Dyn.    Unmanned Aerial Vehicle Using Integral Sliding
                                                                  Mode Control. Procedia Technol. 2016;25:36–43.
                2019;95(2):1347–1360.
                                                                  https://doi.org/10.1016/j.protcy.2016.08.078
                https://doi.org/10.1007/s11071-018-4632-0
                                                              45. Barambones O. Sliding Mode Control Strategy
             34. Saif A-WA, Gaufan KB, El-Ferik S, Al-Dhaifallah
                                                                  for Wind Turbine Power Maximization. Energies,
                M. Fractional Order Sliding Mode Control of
                                                                  2012;5(7):2310–2330.
                Quadrotor Based on Fractional Order Model.
                                                                  https://doi.org/10.3390/en5072310
                IEEE Access, 2023;11:79823–79837.
                                                              46. Firouzi M, Nasiri M, Mobayen S, Ghareh-
                https://doi.org/10.1109/ACCESS.2023.3296644
                                                                  petian GB. Sliding Mode Controller-Based BFCL
             35. Wang J, Shao C, Chen Y-Q. Fractional order slid-  for Fault Ride-Through Performance Enhance-
                ing mode control via disturbance observer for a   ment of DFIG-Based Wind Turbines. Complexity,
                class of fractional order systems with mismatched  2020;2020(1):1259539.
                disturbance,. Mechatronics, 2018;53:8–19.         https://doi.org/10.1155/2020/1259539
                https://doi.org/10.1016/j.mechatronics.2018.05.006
                                                              47. Arisoy A, Bayrakceken MK, Basturk S, Gokasan
             36. Moshiri B, Jalili-Kharaajoo M, Besharati F. Ap-  M, Bogosyan OS. High order sliding mode control
                plication of fuzzy sliding mode based on genetic  of a space robot manipulator. Proceedings of 5th
                algorithms to control of robotic manipulators.    International Conference on Recent Advances in
                EFTA 2003. 2003 IEEE Conference on Emerging       Space Technologies-RAST2011, 2011;833–838.
                Technologies and Factory Automation. Proceed-     https://doi.org/10.1109/RAST.2011.5966960
                ings (Cat. No.03TH8696) 2003;2:169–172 vol.2.  48. Cai X, Liu F. Numerical simulation of the
                Lisbon, Portugal.                                 fractional-order control system. J Appl Math
                https://doi.org/10.1109/ETFA.2003.1248691         Comput. 2007;23(1):229–241.
                                                                  https://doi.org/10.1007/BF02831971
             37. Utkin VI. Variable Structure Systems with
                Sliding Modes. IEEE Trans Autom Control.      49. Ma C, Hori Y. Fractional-order control: The-
                1977;22(2):212–222.                               ory and applications in motion control [Past and
                                                                  present]. IEEE Ind Electron Mag. 2007;1(4):6–16.
             38. Utkin VI. Sliding Modes in Problems of Mathe-    https://doi.org/10.1109/MIE.2007.909703
                matical Programming. In: Sliding Modes in Con-
                                                              50. Petr´aˇs I. Tuning and implementation methods for
                trol and Optimization. Springer; 1992: 223–236.
                                                                  fractional-order controllers. Fract Calc Appl Anal.
                https://doi.org/10.1007/978-3-642-84379-2 1 5
                                                                  2012;15(2):282–303.
             39. Panchade VM, Chile RH, Patre BM. A survey on     https://doi.org/10.2478/s13540-012-0021-4
                sliding mode control strategies for induction mo-  51. Naik PA, Owolabi KM, Yavuz M, Zu J. Chaotic
                tors. Annu Rev Control. 2013;37(2):289–307.       dynamics of a fractional order HIV-1 model in-
                https://doi.org/10.1016/j.arcontrol.2013.09.008   volving AIDS-related cancer cells. Chaos, Solitons
                                                                  & Fractals, 2020;140:110272.
             40. Tan S-C, Lai Y-M, Tse C-K. Sliding Mode Con-
                                                                  https://doi.org/10.1016/j.chaos.2020.110272
                trol of Switching Power Converters: Techniques
                and Implementation. CRC Press; 2017.          52. Yavuz M, Bonyah E. New approaches to the frac-
                https://doi.org/10.1201/9781315217796             tional dynamics of schistosomiasis disease model.
                                                                  Phys A Stat Mech Its Appl. 2019;525:373–393.
             41. Yan H, Zhang H, Zhan X, Wang Y, Chen
                                                                  https://doi.org/10.1016/j.physa.2019.03.069
                S, Yang F. Event-Triggered Sliding Mode Con-
                                                              53. Bhatter S, Kumawat S, Bhatia B, Purohit
                trol of Switched Neural Networks With Mode-
                                                                  SD. Analysis of COVID-19 epidemic with in-
                Dependent Average Dwell Time. IEEE Trans Syst
                                                                  tervention impacts by a fractional operator.
                Man Cybern Syst. 2021;51(2):1233–1243.
                                                                  Int J Optim Control Theor Appl. (IJOCTA)
                https://doi.org/10.1109/TSMC.2019.2894984
                                                                  2024;14(3):261–275.
             42. Yau H-T, Chen C-L. Chattering-free fuzzy         https://doi.org/10.11121/ijocta.1515
                sliding-mode  control  strategy  for  uncertain  54. Yavuz M, Ya¸skıran B. Approximate-analytical
                chaotic systems. Chaos, Solitons & Fractals,
                                                                  solutions of cable equation using conformable
                2006;30(3):709–718.
                                                                  fractional operator. New Trends Math Sci.
                https://doi.org/10.1016/j.chaos.2006.03.077
                                                                  2017;5(4):209–219.
                                                           291
   91   92   93   94   95   96   97   98   99   100   101