Page 96 - IJOCTA-15-2
P. 96
Comparison of fractional order sliding mode controllers on robot manipulator
32. Gokyildirim A, Calgan H, Demirtas M. 43. Basci A, Can K, Orman K, Derdiyok A. Tra-
Fractional-Order sliding mode control of a jectory Tracking Control of a Four Rotor Un-
4D memristive chaotic system. J Vib Control. manned Aerial Vehicle Based on Continuous
2024;30(7–8):1604–1620. Sliding Mode Controller. Elektr Ir Elektrotech.
https://doi.org/10.1177/10775463231166187 2017;23(3):12–19.
https://doi.org/10.5755/j01.eie.23.3.18325
33. Hua C, Chen J, Guan X. Fractional-order slid-
ing mode control of uncertain QUAVs with 44. Haridas V, Vivek A. Longitudinal Guidance of
time-varying state constraints. Nonlinear Dyn. Unmanned Aerial Vehicle Using Integral Sliding
Mode Control. Procedia Technol. 2016;25:36–43.
2019;95(2):1347–1360.
https://doi.org/10.1016/j.protcy.2016.08.078
https://doi.org/10.1007/s11071-018-4632-0
45. Barambones O. Sliding Mode Control Strategy
34. Saif A-WA, Gaufan KB, El-Ferik S, Al-Dhaifallah
for Wind Turbine Power Maximization. Energies,
M. Fractional Order Sliding Mode Control of
2012;5(7):2310–2330.
Quadrotor Based on Fractional Order Model.
https://doi.org/10.3390/en5072310
IEEE Access, 2023;11:79823–79837.
46. Firouzi M, Nasiri M, Mobayen S, Ghareh-
https://doi.org/10.1109/ACCESS.2023.3296644
petian GB. Sliding Mode Controller-Based BFCL
35. Wang J, Shao C, Chen Y-Q. Fractional order slid- for Fault Ride-Through Performance Enhance-
ing mode control via disturbance observer for a ment of DFIG-Based Wind Turbines. Complexity,
class of fractional order systems with mismatched 2020;2020(1):1259539.
disturbance,. Mechatronics, 2018;53:8–19. https://doi.org/10.1155/2020/1259539
https://doi.org/10.1016/j.mechatronics.2018.05.006
47. Arisoy A, Bayrakceken MK, Basturk S, Gokasan
36. Moshiri B, Jalili-Kharaajoo M, Besharati F. Ap- M, Bogosyan OS. High order sliding mode control
plication of fuzzy sliding mode based on genetic of a space robot manipulator. Proceedings of 5th
algorithms to control of robotic manipulators. International Conference on Recent Advances in
EFTA 2003. 2003 IEEE Conference on Emerging Space Technologies-RAST2011, 2011;833–838.
Technologies and Factory Automation. Proceed- https://doi.org/10.1109/RAST.2011.5966960
ings (Cat. No.03TH8696) 2003;2:169–172 vol.2. 48. Cai X, Liu F. Numerical simulation of the
Lisbon, Portugal. fractional-order control system. J Appl Math
https://doi.org/10.1109/ETFA.2003.1248691 Comput. 2007;23(1):229–241.
https://doi.org/10.1007/BF02831971
37. Utkin VI. Variable Structure Systems with
Sliding Modes. IEEE Trans Autom Control. 49. Ma C, Hori Y. Fractional-order control: The-
1977;22(2):212–222. ory and applications in motion control [Past and
present]. IEEE Ind Electron Mag. 2007;1(4):6–16.
38. Utkin VI. Sliding Modes in Problems of Mathe- https://doi.org/10.1109/MIE.2007.909703
matical Programming. In: Sliding Modes in Con-
50. Petr´aˇs I. Tuning and implementation methods for
trol and Optimization. Springer; 1992: 223–236.
fractional-order controllers. Fract Calc Appl Anal.
https://doi.org/10.1007/978-3-642-84379-2 1 5
2012;15(2):282–303.
39. Panchade VM, Chile RH, Patre BM. A survey on https://doi.org/10.2478/s13540-012-0021-4
sliding mode control strategies for induction mo- 51. Naik PA, Owolabi KM, Yavuz M, Zu J. Chaotic
tors. Annu Rev Control. 2013;37(2):289–307. dynamics of a fractional order HIV-1 model in-
https://doi.org/10.1016/j.arcontrol.2013.09.008 volving AIDS-related cancer cells. Chaos, Solitons
& Fractals, 2020;140:110272.
40. Tan S-C, Lai Y-M, Tse C-K. Sliding Mode Con-
https://doi.org/10.1016/j.chaos.2020.110272
trol of Switching Power Converters: Techniques
and Implementation. CRC Press; 2017. 52. Yavuz M, Bonyah E. New approaches to the frac-
https://doi.org/10.1201/9781315217796 tional dynamics of schistosomiasis disease model.
Phys A Stat Mech Its Appl. 2019;525:373–393.
41. Yan H, Zhang H, Zhan X, Wang Y, Chen
https://doi.org/10.1016/j.physa.2019.03.069
S, Yang F. Event-Triggered Sliding Mode Con-
53. Bhatter S, Kumawat S, Bhatia B, Purohit
trol of Switched Neural Networks With Mode-
SD. Analysis of COVID-19 epidemic with in-
Dependent Average Dwell Time. IEEE Trans Syst
tervention impacts by a fractional operator.
Man Cybern Syst. 2021;51(2):1233–1243.
Int J Optim Control Theor Appl. (IJOCTA)
https://doi.org/10.1109/TSMC.2019.2894984
2024;14(3):261–275.
42. Yau H-T, Chen C-L. Chattering-free fuzzy https://doi.org/10.11121/ijocta.1515
sliding-mode control strategy for uncertain 54. Yavuz M, Ya¸skıran B. Approximate-analytical
chaotic systems. Chaos, Solitons & Fractals,
solutions of cable equation using conformable
2006;30(3):709–718.
fractional operator. New Trends Math Sci.
https://doi.org/10.1016/j.chaos.2006.03.077
2017;5(4):209–219.
291

