Page 175 - IJOCTA-15-3
P. 175

A numerical method for solving distributed-order multi-term time-fractional telegraph equations involving

             24. Mainardi F, Pagnini G. The role of the       36. Abbaszadeh M, Dehghan M. Meshless upwind
                Fox-Wright functions in fractional sub-diffusion  local radial basis function-finite difference tech-
                of distributed order. J Comput Appl Math.         nique to simulate the time-fractional distributed-
                2007;207(2):245-257.                              order advection-diffusion equation. Eng Comput.
                https://doi.org/10.1016/j.cam.2006.10.014         2021;37:873-889.
             25. Ahmed HF, Moubarak MRA, Hashem WA.               https://doi.org/10.1007/s00366-019-00861-7
                Gegenbauer spectral tau algorithm for solving  37. Ye H, Liu F, Anh V. Compact difference scheme
                fractional telegraph equation with convergence    for distributed-order time-fractional diffusion-
                analysis. Pramana - J Phys. 2021;95(2):1-16.      wave equation on bounded domains. J Comput
                https://doi.org/10.1007/s12043-021-02113-0        Phys. 2015;298:652-660.
             26. Zhang Y, Qian J, Papelis C, Sun P, Yu Z. Im-     https://doi.org/10.1016/j.jcp.2015.06.025
                                                                              ˜
                proved understanding of bimolecular reactions  38. Chen H, LA¼ S, Chen W. Finite differ-
                in deceptively simple homogeneous media: from     ence/spectral approximations for the distributed
                laboratory experiments to Lagrangian quantifica-  order time fractional reaction-diffusion equation
                tion. Water Resour Res. 2014;50(2):1704-1715.     on an unbounded domain. J Comput Phys.
                https://doi.org/10.1002/2013WR014711              2016;315:84-97.
             27. Sun HG, Chen W, Li C, Chen YQ. Fractional dif-   https://doi.org/10.1016/j.jcp.2016.03.044
                ferential models for anomalous diffusion. Physica  39. Qiu W, Xu D, Chen H, Guo J. An alternating
                A: Stat Mech Appl. 2010;389(14):2719-2724.        direction implicit Galerkin finite element method
                https://doi.org/10.1016/j.physa.2010.02.030       for the distributed-order time-fractional mobile-
             28. Gao GH, Sun ZZ. Two difference schemes for solv-  immobile equation in two dimensions. Comput
                ing the one-dimensional time distributed-order    Math Appl. 2020;80(12):3156-3172.
                fractional wave equations. Numer Algorithms.      https://doi.org/10.1016/j.camwa.2020.11.003
                2017;74:675-697.                              40. Yang Z, Zheng X, Wang H. A variably
                https://doi.org/10.1007/s11075-016-0167-y         distributed-order time-fractional diffusion equa-
             29. Wang Z, Vong S. Compact difference schemes for   tion: analysis and approximation. Comput Meth-
                the modified anomalous fractional sub-diffusion   ods Appl Mech Eng. 2020;367:113118.
                equation and the fractional diffusion-wave equa-  https://doi.org/10.1016/j.cma.2020.113118
                tion. J Comput Phys. 2014;277:1-15.           41. Abdelkawy MA, Lopes AM, Zaky MA. Shifted
                https://doi.org/10.1016/j.jcp.2014.08.012         fractional Jacobi spectral algorithm for solving
             30. Ye H, Liu F, Anh V, Turner I. Numerical analy-   distributed  order  time-fractional  reaction-
                sis for the time distributed-order and Riesz space  diffusion  equations.  Comput  Appl  Math.
                fractional diffusions on bounded domains. IMA J   2019;38:1-21.
                Appl Math. 2015;80(3):825-838.                    https://doi.org/10.1007/s40314-019-0845-1
                https://doi.org/10.1093/imamat/hxu015         42. Ansari A, Derakhshan MH. On spectral po-
             31. Jian HY, Huang TZ, Gu XM, Zhao YL. Fast          lar fractional Laplacian. Math Comput Simul.
                second-order implicit difference schemes for time  2023;206:636-663.
                distributed–order and Riesz X.L. space fractional  https://doi.org/10.1016/j.matcom.2022.12.008
                diffusion–wave equations. Comput Math Appl.   43. Derakhshan MH, Aminataei A. A numerical
                2021;94:136-154.                                  method for finding solution of the distributed-
                https://doi.org/10.1016/j.camwa.2021.05.003       order time-fractional forced Kortewegde Vries
             32. Kharazmi E, Zayernouri M, Karniadakis G.         equation including the Caputo fractional deriv-
                Petrov-Galerkin and spectral collocation methods  ative. Math Methods Appl Sci. 2022;45(5):3144-
                for distributed order differential equations. SIAM  3165.
                J Sci Comput. 2017;39:A1003-A1037.                https://doi.org/10.1002/mma.7981
                https://doi.org/10.1137/16M1073121            44. Ahmed HF, Hashem WA. Improved Gegen-
             33. Gao G, Sun Z. Two alternating direction implicit  bauer spectral tau algorithms for distributed-
                difference schemes with the extrapolation method  order time-fractional telegraph models in multi-
                for the two-dimensional distributed-order differ-  dimensions. Numer Algorithms. 2023; 93(3):1013-
                ential equations. Comput Math Appl. 2015;69:      1043.
                926-948.                                          https://doi.org/10.1007/s11075-022-01452-2
                https://doi.org/10.1016/j.camwa.2015.02.023   45. Ilic M, Liu F, Turner I, Anh V. Numerical approx-
             34. Duong P, Kwok E, Lee M. Deterministic analy-     imation of a fractional-in-space diffusion equa-
                sis of distributed order systems using operational  tion, I. Fract Calc Appl Anal. 2005;8(3):323-341.
                matrix. Appl Math Model. 2016;40:1929-1940.       http://eudml.org/doc/11303
                https://doi.org/10.1016/j.apm.2015.09.035     46. Morgado ML, Rebelo M. Numerical approxima-
             35. Mashayekhi S, Razzaghi M. Numerical solu-        tion of distributed order reaction-diffusion equa-
                tion of distributed order fractional differential  tions. J Appl Math Comput. 2015; 275:216-227.
                equations by hybrid functions. J Comput Phys.     https://doi.org/10.1016/j.cam.2014.07.029
                2016;315:169-181.                             47. Moghaddam BP, Tenreiro Machado JA, Morgado
                https://doi.org/10.1016/j.jcp.2016.01.041         ML. Numerical approach for a class of distributed
                                                           547
   170   171   172   173   174   175   176   177   178