Page 174 - IJOCTA-15-3
P. 174
Pakchin et al. / IJOCTA, Vol.15, No.3, pp.535-548 (2025)
References 12. Derakhshan MH. Existence, uniqueness, Ulam-
Hyers stability and numerical simulation of so-
1. Azroul E, Kamali N, Ragusa MA, Shimi M. Vari-
lutions for variable order fractional differential
ational methods for a p(x,.)-fractional bi-nonlocal
equations in fluid mechanics. J Appl Math Com-
problem of elliptic type. Rend Circ Mat Palermo,
put. 2022;68(1):403-429.
II. Ser. 2025;74(1):1-21.
https://doi.org/10.1007/s12190-021-01537-6
https://doi.org/10.1007/s12215-024-01156-7
13. Irandoust-pakchin S, Abdi-mazraeh S, Fahimi-
2. Alotaibi M, Jleli M, Ragusa MA, Samet B. On
khalilabad I. Higher order class of finite difference
the absence of global weak solutions for a nonlin- method for time-fractional Liouville-Caputo and
˜
ear time-fractional SchrN†dinger equation. Appl
space-Riesz fractional diffusion equation. Filomat.
Anal. 2024;103(1):1-15.
2024;38(2):505-521.
https://doi.org/10.1080/00036811.2022.2036335
https://doi.org/10.2298/FIL2402505I
3. Kilbas AA, Srivastave HM, Trujillo JJ. The-
14. Irandoust-Pakchin S, Abdi-Mazraeh S, Khani A.
ory and Applications of Fractional Differential
Numerical solution for a variable-order fractional
Equations. Amsterdam: Elsevier B.V.; 2006.
nonlinear cable equation via Chebyshev cardi-
ISBN:0444518320, 9780444518323
nal functions. Comput Math and Math Phys.
4. Podlubny I. Fractional Differential Equations: An
2017;57:2047-2056.
Introduction to Fractional Derivatives, Fractional
https://doi.org/10.1134/S0965542517120120
Differential Equations, to Methods of Their Solu-
15. Fahimi-khalilabad I, Irandoust-pakchin S, Abdi-
tion and Some of their Applications, vol. 198. New
mazraeh S. High-order finite difference method
York: Academic Press; 1998. ISBN:0080531989,
based on linear barycentric rational interpola-
9780080531984
tion for Caputo type sub-diffusion equation. Math
5. Mollahasani N, Moghadam MM, Afrooz K. A new
Comput Simulat. 2022;199:60-80.
treatment based on hybrid functions to the so-
https://doi.org/10.1016/j.matcom.2022.03.008
lution of telegraph equations of fractional order.
16. Caputo M. Mean fractional-order-derivatives dif-
Appl Math Model. 2016; 40(4):2804-2814.
ferential equations and filters. Ann Univ Ferrara.
https://doi.org/10.1016/j.apm.2015.08.020
1995;41:73-84.
6. Wang R, Shi L, Wang B. Asymptotic behavior of
https://doi.org/10.1007/BF02826009
fractional nonclassical diffusion equations driven 17. Caputo M. Distributed order differential equa-
N
by nonlinear colored noise on R . Nonlinearity.
tions modelling dielectric induction and diffusion.
2019; 32(11): 4524-4556.
Fract Calc Appl Anal. 2001;4:421-442.
https://doi.org/10.1088/1361-6544/ab32d7
ww.math.bas.bg/fcaa, www.diogenes.bg/fcaa.
7. Yasin F, Afzal Z, Saleem MS, Jahangir N, Shang
18. Caputo M. Diffusion with space memory modelled
Y. Hermite–Hadamard type inequality for non-
with distributed order space fractional differential
convex functions employing the Caputo–Fabrizio
equations. Ann Geophys. 2003;46(2).
fractional integral. Res Math. 2024;11(1):2366164.
https://doi.org/10.4401/ag-3395
https://doi.org/10.1080/27684830.2024.2366164
19. Chechkin A, Gorenflo R, Sokolov I. Retarding
8. Mohammed AA, Marasi HR, Derakhshan MH,
subdiffusion and accelerating superdiffusion gov-
Kumar P. An efficient numerical method for
erned by distributed-order fractional diffusion
the time-fractional distributed order nonlinear
equations. Phys Rev E. 2002;66:046129.
Klein-Gordon equation with shifted fractional
https://doi.org/10.1103/PhysRevE.66.046129
Gegenbauer multi-wavelets method. Phys Scr.
20. Sokolov I, Chechkin A, Klafter J. Distributed-
2023;98:084001.
order fractional kinetics. Acta Physica Polonica
https://doi.org/10.1088/1402-4896/accedb
B. 2004;35:1323-1341.
9. Umarov S. Continuous time random walk models
https://doi.org/10.48550/arXiv.cond-
associated with distributed order diffusion equa-
mat/0401146
tions. Fract Cal Appl Anal. 2015;18:821-837.
21. Vieira N, Rodrigues MM, Ferreira M. Time-
https://doi.org/10.1515/fca-2015-0049
fractional telegraph equation of distributed order
10. Guo S, Mei L, Zhang Z. Time-fractional Gard-
in higher dimensions. Commun Nonlinear Sci Nu-
ner equation for ion-acoustic waves in negative-
mer Simul. 2021;102:105925.
ion-beam plasma with negative ions and non-
https://doi.org/10.1016/j.cnsns.2021.105925
thermal nonextensive electrons. Phys Plasmas.
22. Ratner V, Zeevi YY. Denoising-enhancing images
2015;22:052306.
on elastic manifolds. IEEE Trans Image Process.
https://doi.org/10.1063/1.4919264
2011;20(8):2099-2109.
11. Ansari A, Derakhshan MH, Askari H. Distributed
https://doi.org/10.1109/TIP.2011.2118221
order fractional diffusion equation with fractional
23. Gorenflo R, Luchko Y, Stojanovi M. Fundamen-
Laplacian in axisymmetric cylindrical configu-
tal solution of a distributed order time-fractional
ration. Commun Nonlinear Sci Numer Simul.
diffusion-wave equation as probability density.
2022;113:106590.
Fract Calc Appl Anal. 2013;16(2):297-316.
https://doi.org/10.1016/j.cnsns.2022.106590
https://doi.org/10.2478/s13540-013-0019-6
546

