Page 174 - IJOCTA-15-3
P. 174

Pakchin et al. / IJOCTA, Vol.15, No.3, pp.535-548 (2025)
            References                                        12. Derakhshan MH. Existence, uniqueness, Ulam-
                                                                  Hyers stability and numerical simulation of so-
              1. Azroul E, Kamali N, Ragusa MA, Shimi M. Vari-
                                                                  lutions for variable order fractional differential
                ational methods for a p(x,.)-fractional bi-nonlocal
                                                                  equations in fluid mechanics. J Appl Math Com-
                problem of elliptic type. Rend Circ Mat Palermo,
                                                                  put. 2022;68(1):403-429.
                II. Ser. 2025;74(1):1-21.
                                                                  https://doi.org/10.1007/s12190-021-01537-6
                https://doi.org/10.1007/s12215-024-01156-7
                                                              13. Irandoust-pakchin S, Abdi-mazraeh S, Fahimi-
              2. Alotaibi M, Jleli M, Ragusa MA, Samet B. On
                                                                  khalilabad I. Higher order class of finite difference
                the absence of global weak solutions for a nonlin-  method for time-fractional Liouville-Caputo and
                                      ˜
                ear time-fractional SchrN†dinger equation. Appl
                                                                  space-Riesz fractional diffusion equation. Filomat.
                Anal. 2024;103(1):1-15.
                                                                  2024;38(2):505-521.
                https://doi.org/10.1080/00036811.2022.2036335
                                                                  https://doi.org/10.2298/FIL2402505I
              3. Kilbas AA, Srivastave HM, Trujillo JJ. The-
                                                              14. Irandoust-Pakchin S, Abdi-Mazraeh S, Khani A.
                ory and Applications of Fractional Differential
                                                                  Numerical solution for a variable-order fractional
                Equations. Amsterdam:   Elsevier B.V.; 2006.
                                                                  nonlinear cable equation via Chebyshev cardi-
                ISBN:0444518320, 9780444518323
                                                                  nal functions. Comput Math and Math Phys.
              4. Podlubny I. Fractional Differential Equations: An
                                                                  2017;57:2047-2056.
                Introduction to Fractional Derivatives, Fractional
                                                                  https://doi.org/10.1134/S0965542517120120
                Differential Equations, to Methods of Their Solu-
                                                              15. Fahimi-khalilabad I, Irandoust-pakchin S, Abdi-
                tion and Some of their Applications, vol. 198. New
                                                                  mazraeh S. High-order finite difference method
                York: Academic Press; 1998. ISBN:0080531989,
                                                                  based on linear barycentric rational interpola-
                9780080531984
                                                                  tion for Caputo type sub-diffusion equation. Math
              5. Mollahasani N, Moghadam MM, Afrooz K. A new
                                                                  Comput Simulat. 2022;199:60-80.
                treatment based on hybrid functions to the so-
                                                                  https://doi.org/10.1016/j.matcom.2022.03.008
                lution of telegraph equations of fractional order.
                                                              16. Caputo M. Mean fractional-order-derivatives dif-
                Appl Math Model. 2016; 40(4):2804-2814.
                                                                  ferential equations and filters. Ann Univ Ferrara.
                https://doi.org/10.1016/j.apm.2015.08.020
                                                                  1995;41:73-84.
              6. Wang R, Shi L, Wang B. Asymptotic behavior of
                                                                  https://doi.org/10.1007/BF02826009
                fractional nonclassical diffusion equations driven  17. Caputo M. Distributed order differential equa-
                                             N
                by nonlinear colored noise on R . Nonlinearity.
                                                                  tions modelling dielectric induction and diffusion.
                2019; 32(11): 4524-4556.
                                                                  Fract Calc Appl Anal. 2001;4:421-442.
                https://doi.org/10.1088/1361-6544/ab32d7
                                                                  ww.math.bas.bg/fcaa, www.diogenes.bg/fcaa.
              7. Yasin F, Afzal Z, Saleem MS, Jahangir N, Shang
                                                              18. Caputo M. Diffusion with space memory modelled
                Y. Hermite–Hadamard type inequality for non-
                                                                  with distributed order space fractional differential
                convex functions employing the Caputo–Fabrizio
                                                                  equations. Ann Geophys. 2003;46(2).
                fractional integral. Res Math. 2024;11(1):2366164.
                                                                  https://doi.org/10.4401/ag-3395
                https://doi.org/10.1080/27684830.2024.2366164
                                                              19. Chechkin A, Gorenflo R, Sokolov I. Retarding
              8. Mohammed AA, Marasi HR, Derakhshan MH,
                                                                  subdiffusion and accelerating superdiffusion gov-
                Kumar P. An efficient numerical method for
                                                                  erned by distributed-order fractional diffusion
                the time-fractional distributed order nonlinear
                                                                  equations. Phys Rev E. 2002;66:046129.
                Klein-Gordon equation with shifted fractional
                                                                  https://doi.org/10.1103/PhysRevE.66.046129
                Gegenbauer multi-wavelets method. Phys Scr.
                                                              20. Sokolov I, Chechkin A, Klafter J. Distributed-
                2023;98:084001.
                                                                  order fractional kinetics. Acta Physica Polonica
                https://doi.org/10.1088/1402-4896/accedb
                                                                  B. 2004;35:1323-1341.
              9. Umarov S. Continuous time random walk models
                                                                  https://doi.org/10.48550/arXiv.cond-
                associated with distributed order diffusion equa-
                                                                  mat/0401146
                tions. Fract Cal Appl Anal. 2015;18:821-837.
                                                              21. Vieira N, Rodrigues MM, Ferreira M. Time-
                https://doi.org/10.1515/fca-2015-0049
                                                                  fractional telegraph equation of distributed order
             10. Guo S, Mei L, Zhang Z. Time-fractional Gard-
                                                                  in higher dimensions. Commun Nonlinear Sci Nu-
                ner equation for ion-acoustic waves in negative-
                                                                  mer Simul. 2021;102:105925.
                ion-beam plasma with negative ions and non-
                                                                  https://doi.org/10.1016/j.cnsns.2021.105925
                thermal nonextensive electrons. Phys Plasmas.
                                                              22. Ratner V, Zeevi YY. Denoising-enhancing images
                2015;22:052306.
                                                                  on elastic manifolds. IEEE Trans Image Process.
                https://doi.org/10.1063/1.4919264
                                                                  2011;20(8):2099-2109.
             11. Ansari A, Derakhshan MH, Askari H. Distributed
                                                                  https://doi.org/10.1109/TIP.2011.2118221
                order fractional diffusion equation with fractional
                                                              23. Gorenflo R, Luchko Y, Stojanovi M. Fundamen-
                Laplacian in axisymmetric cylindrical configu-
                                                                  tal solution of a distributed order time-fractional
                ration. Commun Nonlinear Sci Numer Simul.
                                                                  diffusion-wave equation as probability density.
                2022;113:106590.
                                                                  Fract Calc Appl Anal. 2013;16(2):297-316.
                https://doi.org/10.1016/j.cnsns.2022.106590
                                                                  https://doi.org/10.2478/s13540-013-0019-6
                                                           546
   169   170   171   172   173   174   175   176   177   178