Page 169 - IJOCTA-15-3
P. 169

A numerical method for solving distributed-order multi-term time-fractional telegraph equations involving


                                                                                         L
                                                                                      1  X
                                                                       2−α   2−α                 µ p
                                                              × [(i + 1)  − i   ]} = −     b 1 (µ p )b (∆t) 2−µ p
                                                                                                 1
                L                 k−1                                                 L
             1  X        (∆t)  −µ p X  k−j+1     k−j                                    p=0
                  b 1 (µ p )(        (U q    − U q  ))
                                                                                           L
             L           Γ(2 − µ p )                              2           2           X              4−ν p
                                                                                 ′′
               p=0                j=0                         ×  ∂ u(x q , η k )  +  h  F 1 (µ) −  1  b 2 (ν p )b ν p  (∆t)
                                                                                                   2
                                                                      2
                                                 2
                                                ∂ U(x q , η k )     ∂t       24         L  p=0          24
                                      µ p
             × ((j + 1) 1−µ p  − j 1−µ p ) + b (∆t) 2−µ p  )
                                      1               2           4      ′     2               4−α  4
                                                    ∂t        ×  ∂ U(x q , η )  h  ′′     α  (∆t)  ∂ U
                                                                          k
                              L
                                                k−1
               h 2  ′′     1  X        (∆t) −ν p X   k−j+1           ∂t 4   +  24 F 2 (ν) + b  24  ∂x 4  (θ q , η k )
             −   F 1 (µ) +      b 2 (ν p )(        (U q                          ∂f
                                                                         k
               24          L           Γ(3 − ν p )            + f(x q , t k , U ) + ∆t[  (x q , ζ k+1 , U(x q , ζ k+1 ))
                             p=0                j=0                      q       ∂t
             − 2U q k−j  + U q k−j−1 )((j + 1) 2−ν p  − j  2−ν p )  +  ∂f  (x q , ζ k+1 , U(x q , ζ k+1 )) ∂U  (x q , ζ k+1 )]
                                   ′
                           4
                  (∆t) 4−ν p  ∂ U(x q , η )  h 2                 ∂U                    ∂t
                ν p                k         ′′                                                          (33)
             + b                     ) −   F 2 (ν))
                2               4
                     24       ∂t         24                       Applying the definition of T 1 and T 2 , we can
                       κ(∆x) −α        (1 − α)(2 − α)U k      rewrite Equation (33) as in Equation (34):
             = −                  πα  {              0
                 2Γ(α)Γ(3 − α)cos(  )         q α
                                   2
                                                                                              k
                                                                                k
                                  q−1                          T 1 (U k+1 ) = T 2 (U ) + f(x q , t k , U )
               (2 − α)  k     k   X     k        k                  q           q             q
             +        (U − U ) +     (U q−i+1  − 2U q−i
                             0
                        1
                q α−1                                                L                   ∂ u(x q , η k )
                                                                                           2
                                  i=0                           −  1  X  b 1 (µ p )b (∆t) 2−µ p
                                                                               µ p
                                          (1 − α)(2 − α)U k       L            1             ∂t 2
                 k
             + U q−i−1 )[(i + 1) 2−α  − i 2−α ] +       M            p=0
                                              (M − q) α                          L
                                                                  h 2          1  X          (∆t) 4−ν p
                                         M−q−1                         ′′                  ν p
                 (2 − α)     k    k        X      k             +    F 1 (µ) −      b 2 (ν p )b 2
             −            (U M  − U M−1 ) +    (U q+i−1           24          L  p=0            24
               (M − q) α−1
                                           i=0                      4      ′      2
                                                                  ∂ U(x q , η )  h   ′′                  (34)
                                                                            k
                        k
                  k
             − 2U q+i  + U q+i+1 )[(i + 1) 2−α  − i 2−α ]}      ×              +   F 2 (ν)
                                                                       ∂t 4      24
                          4
                 (∆t) 4−α  ∂ U                                      (∆x) 4−α  ∂ U
                                                                              4
                α
             + b             (θ q , η k )                       + b α            (θ q , η k )
                    24   ∂x 4                                          24    ∂x 4
                                ∂f
                        k
             + f(x q , t k , U ) + ∆t[  (x q , ζ k+1 , U(x q , ζ k+1 ))  ∂f
                        q
                                ∂t                              + ∆t[  ∂t  (x q , ζ k+1 , U(x q , ζ k+1 ))
               ∂f                     ∂U
             +    (x q , ζ k+1 , U(x q , ζ k+1 ))  (x q , ζ k+1 )]  ∂f                    ∂U
               ∂U                      ∂t                       +     (x q , ζ k+1 , U(x q , ζ k+1 ))  (x q , ζ k+1 )]
                                                       (32)       ∂U                       ∂t
            in which η k ∈ (0, t k ), η ′  ∈ (0, t k ), θ q ∈ (x q−1 , x q )  Thus, the error e k q  for q = 1, . . . , M and
                                   k
            and ζ k ∈ (t k , t k+1 ). We can rewrite Equation (14)  k = 1, . . . , N satisfies Equation (35)
            as follows in Equation (33):
                                                              (  0
                                                                e = 0,

                                                                 q
                                                                    (k+1)      k   (k+1)       k         ˜ k
                                                                T 1 U q  = T 2 U q  + R q  + f(x q , t k , U ) − f(x q , t k , U )
                                                                                                q
                                                                                                           q
                                                                                                         (35)
               L                k−1                           in which it can be defined as in Equation (36)
             1  X       (∆t)  −µ p X  k−j+1  k−j
                 b 1 (µ p )(      (U      − U   ))
             L         Γ(2 − µ p )  q        q
              p=0               j=0                                        L
                                                                                                2
                                                                        1  X                   ∂ u(x q , η k )
                                     L                          k+1                 µ p   2−µ p
                                   1  X       (∆t) −ν p       R q  = −       b 1 (µ p )b (∆t)
                                                                                    1
             × ((j + 1) 1−µ p  − j  1−µ p ) +  b 2 (ν p )(              L                         ∂t 2
                                   L         Γ(3 − ν p )                  p=0
                                    p=0
                                                                                L
                                                                                                             ′
                                                                                                     4
               k−1                                               h 2         1  X          (∆t) 4−ν p  ∂ U(x q , η )
               X                                                     ′′                  ν p                 k
             ×   (U  k−j+1  − 2U  k−j  + U  k−j−1 )((j + 1) 2−ν p  − j  2−ν p )  +  F 1 (µ) −  b 2 (ν p )b
                   q         q     q                             24          L           2    24        ∂t 4
               j=0                                                             p=0
                                                                                         4
                    κ(∆x) −α      (1 − α)(2 − α)U 0 k  (2 − α)   h 2           (∆x) 4−α  ∂ U
                                                                     ′′
             +                πα  {              +            +    F 2 (ν) + b α            (θ q , η k )
               2Γ(α)Γ(3 − α)cos(  )     q α         q α−1                                 4
                               2                                 24               24    ∂x
                          q−1                                       ∂f
                      k
                                             k
                 k
                              k
                                       k
             × (U − U ) +  X (U q−i+1  − 2U q−i  + U q−i−1 )  + ∆t[    (x q , ζ k+1 , U(x q , ζ k+1 ))
                     0
                 1
                                                                    ∂t
                          i=0
                                                                 ∂f                      ∂U
                                              k
                                (1 − α)(2 − α)U M   (2 − α)   +     (x q , ζ k+1 , U(x q , ζ k+1 ))  (x q , ζ k+1 )]
                     2−α
                          2−α
             × [(i + 1)  − i  ] +               −                ∂U                      ∂t
                                    (M − q) α     (M − q) α−1
                                                                                                         (36)
                            M−q−1                                           k+1      k+1  k+1       k+1
                      k
                                             k
                                                   k
                 k
                                    k
             × (U M  − U M−1 ) +  X  (U q+i−1  − 2U q+i  + U q+i+1 )  Consider R  = [R 1  , R 2  , . . . , R M  ], k =
                              i=0                             0, 1, . . .. From Equation (37), we get
                                                           541
   164   165   166   167   168   169   170   171   172   173   174