Page 168 - IJOCTA-15-3
P. 168

Pakchin et al. / IJOCTA, Vol.15, No.3, pp.535-548 (2025)
            max 0≤m≤M |e k+1 | =∥ E k+1  ∥ ∞ , then, we have
                         m
                                    z
            Equation (23):
                                                                (1 − α)(2 − α)   2(2 − α)  (1 − α)(2 − α)

                                                                              +          +
                                                                      q α         q α−1       (M − q) α
            (ξ 1 (L, ∆t) + ξ 2 (L, ∆t)) ∥ E k+1  ∥ ∞
                                                                  2(2 − α)
                                            κ(∆x) −α          −             , b = (ξ 1 k 1−µ p  + 2ξ 2 k 2−ν p  + ξ 2 + L f ),
             = (ξ 1 (L, ∆t) + ξ 2 (L, ∆t))|e k+1 | +  πα         (M − q) α−1
                                  z
                                       2Γ(α)Γ(3 − α)cos(  )
                                                      2
                q−1
               (                                              c = ξ 2 k  2−ν p
                X
             ×    (2|e k z−i | − 2|e k z−i |)[(i + 1) 2−α  − i 2−α ]                                     (26)
                i=0
                                                              and for j = 2, . . . , k − 1, we have Equation (27):
               M−q−1                           )
                X
             +     (2|e k z+i | − 2|e k z+i |)[(i + 1) 2−α  − i 2−α ]
                i=0
                                            κ(∆x) −α                      a = ξ 1 k 1−µ p  + ξ 2 k  2−ν p ,
             ≤ (ξ 1 (L, ∆t) + ξ 2 (L, ∆t))|e k+1 | +  πα
                                  z
                                       2Γ(α)Γ(3 − α)cos(  )
                                                      2                   b = ξ 1 k 1−µ p  + 2ξ 2 k 2−ν p ,  (27)
               q−1
               X
             × {  (2|e k z−i | − |e k z−i−1  − |e k z−i+1 |[(i + 1) 2−α  − i 2−α ])  c = ξ 2 k 2−ν p
                i=0
               M−q−1
                X
             +     (2|e k z+i | − |e k z+i−1 | − |e k z+i+1 |) × [(i + 1) 2−α  − i 2−α ]}  Equation (25) can also be rewritten as follows
                i=0                                           Equation (28)
                                             κ(∆x) −α
             ≤ |(ξ 1 (L, ∆t) + ξ 2 (L, ∆t))|e k+1 | −  πα
                                  z
                                        2Γ(α)Γ(3 − α)cos(  )
                                                       2
               q−1
               X                                                                              k−1
             × {  (|e k z−i+1 | − 2|e k z−i | + |e k z−i−1 |)[(i + 1) 2−α  − i 2−α ]  k+1  1  X       k−j+1
                i=0                                            ∥ E   ∥ ∞ ≤  ξ 1 (L, ∆t) + ξ 2 (L, ∆t)  a ∥ E  ∥ ∞
               M−q−1                                                                          j=1
                X
             +     (|e k z+i+1 | − 2|e k z+i | + |e k z+i−1 |)[(i + 1) 2−α  − i 2−α ]}|  + b ∥ E k−j  ∥ ∞ +c ∥ E k−j−1  ∥ ∞
                i=0
                                             κ(∆x) −α          ≤          1                               0
             ≤ |(ξ 1 (L, ∆t) + ξ 2 (L, ∆t))|e k+1 | +  πα        ξ 1 (L, ∆t) + ξ 2 (L, ∆t)  (akδ 1 + bkδ 2 + ckδ 3 ) ∥ E ∥ ∞
                                  z
                                        2Γ(α)Γ(3 − α)cos(  )
                                                       2
                q−1
               (                                                                                         (28)
                X
             ×    (|e k z−i+1 | − 2|e k z−i | + |e k z−i−1 |) × [(i + 1) 2−α  − i 2−α ]  From Equation (28), we get Equation (29):
                i=0
               M−q−1                                       )

                X
             +      (|e k z+i+1 | − 2|e k z+i | + |e k z+i−1 |) × [(i + 1) 2−α  − i 2−α ]
                                                                         ∥ E k+1           0            (29)
                i=0                                                               ∥ ∞ ≤ ϱ ∥ E ∥ ∞
                                        k
                            k
                                                   e k
             = |T 1 (e k+1 )| = |T 2 (e ) + f(x z , t k , U ) − f(x z , t k , U )|
                   z
                            z
                                        z
                                                    z
                                                                                      1
                                          e k
                   k
                               k
             ≤ |T 2 (e )| + |f(x z , t k , U ) − f(x z , t k , U )|  where ϱ = max{  ξ 1 (L,∆t)+ξ 2 (L,∆t)  (akδ 1 + bkδ 2 +
                   z
                               z
                                           z
                                                       (23)   ckδ 3 )}. Thus, for each arbitrary initial rounding
                                                                     0
                Then, we have Equation (24)                   error E , there exists ϱ > 0, independent of L,
                                                              ∆t, and ∆x, such that in Equation (30):
                                                         e k
                                                      k
                                             k
            (ξ 1 (L, ∆t) + ξ 2 (L, ∆t)) ∥ E  k+1  ∥ ∞ ≤ |T 2 (e )| + L f |U − U )|
                                             z
                                                          z
                                                      z
                                                                               n
                                                                                           0
                                                       (24)                ∥ E ∥ ∞ ≤ ϱ ∥ E ∥ ∞           (30)
            where L f ∈ (0, 1). Substituting Equation (18)
            into Equation (24) yields Equation (25)               Therefore, our numerical method is uncondi-
                                                              tionally stable.
                                                                  Suppose that the exact and approximate solu-
                                            k−1
                                                                                             e k
                                                                                       k
                                    k+1     X       k−j+1     tions of Equation (1) are U and U , respectively.
            (ξ 1 (L, ∆t) + ξ 2 (L, ∆t)) ∥ E  ∥ ∞ ≤  a ∥ E  ∥ ∞                         q       q
                                                              Then, we consider the error function at (x q , t k by
                                            j=1
             + b ∥ E k−j  ∥ ∞ +c ∥ E k−j−1  ∥ ∞               the following formula in Equation (31):
                                                       (25)
            where for j = 1, we have Equation (26):
                                                                      k
                                                                          e k
                                                                k
                                                               e = U − U , k = 1, . . . , N, q = 1, . . . , M (31)
                                                                     q
                                                                q
                                                                           q
            a = (ξ 1 k  1−µ p  + ξ 2 k  2−ν p  + ξ 1 + 2ξ 2 + W(M, α, z)),
                                                                              k
                                                                        k
                                                                                 k
                                                                                        k
                                                              in which e = [e , e , . . . , e ]. Due to Equations
                                       −α                                    1  2      M
                                  κ(∆x)                                               0
                                                             (2) and (15), we have e = [0, 0, . . . , 0]. Then,
            W(M, α, z) =
                           2Γ(α)Γ(3 − α)cos(    )             from Equation (14), we have Equation (32):
                                             πα
                                              2
                                                           540
   163   164   165   166   167   168   169   170   171   172   173