Page 166 - IJOCTA-15-3
P. 166

Pakchin et al. / IJOCTA, Vol.15, No.3, pp.535-548 (2025)
                                                              evaluate these integrals. This choice was moti-
                                 k−1                          vated by the fact that quadrature methods pro-
                         (∆t)  −ν X  ν
                     =              b (u(x, t k−j+1 )         vide a flexible and accurate approach to numeri-
                                     j
                        Γ(3 − ν)                        (7)
                                 j=0                          cal integration, especially when dealing with func-
                        − 2u(x, t k−j ) + u(x, t k−j−1 ))     tions that are difficult to handle analytically. Fur-
                                                              thermore, quadrature methods are widely used for
            in which k 1 = (1 − j)∆t, k 2 = −j∆t, k 3 =       handling fractional integrals due to their ability to
                             ν
            (−j − 1)∆t and b = ((j + 1) 2−ν  − j 2−ν ).
                             j                                approximate the integrals over complex domains
                Also, by applying a similar technique, we get
                                                              with high precision. Therefore, we have Equation
            Equation (8):
                                                              (10):
                              1    Z  t                                                  L
                µ                       ′           −µ          Z  b
               D u(x, t) =             u (x, τ)(t − τ)  dτ                γ             X
                t                                                      C                        C   γ p
                           Γ(1 − µ)  a                             b(γ) D u(x, t)dγ = h     b(γ p ) D u(x, t)
                                                                          t
                                                                                                    t
                           Z  t−a                                a                      p=0
                     1           ′          −µ
               =                u (x, t − τ)τ  dτ                 h 2
                  Γ(1 − µ)  0                                   −    F (γ), γ ∈ (a, b)
                                                                      ′′
                                                                  24
                     1     k−1 Z  (j+1)∆t  ′                                                             (10)
                           X
               =                       u (x, t − τ)τ −µ dτ
                  Γ(1 − µ)     j∆t                            where γ p =  η p−1 +η p  , p = 1, . . . , L, γ p ∈ [η p−1 , η p ],
                           j=0                                              2
                                                              and the interval [η p−1 , η p ] is a partition of the L
                           k−1
                     1     X  u(x, t + k 1 ) − u(x, t + k 2 )  subintervals of [a, b] with equal amplitude h =
               =                                              b−a                    C   γ
                  Γ(1 − µ)               ∆t                      . Here F is F = b(γ) D u(x, t).
                                                                                        t
                           j=0                                 L
                                                                  Then, using Equation (10), we have Equation
                   Z  (j+1)∆t  1
                 ×            µ  dτ                           (11):
                     j∆t     τ
                           k−1                                Z  1                        L
                  (∆t) −µ X    µ                                       C  µ            1  X       C  µ p
               =              b (u(x, t k−j+1 ) − u(x, t k−j ))   b 1 (µ) D u(x, t)dµ =     b 1 (µ p ) D u(x, t)
                                                                          t
                                                                                                     t
                               j
                  Γ(2 − µ)                                      0                      L
                           j=0                                                           p=0
                                                        (8)      h 2
                                                                     ′′
                      µ          2−µ    2−µ                   −    F 1 (µ), µ ∈ (0, 1)
            in which b = ((j +1)     −j    ). For 1 < α < 2,
                      j                                          24
            the Riesz fractional operator can be estimated as                                            (11)
                           45
            in Equation (9) :                                 where µ p =  η p−1 +η p  for p = 1, . . . , L. We con-
                                                                              2
                                                              sider the interval [η p−1 , η p ] with equal amplitude
                                      (∆x) −α                 h =   b−a  such that [η p−1 , η p ] ⊆ [0, 1], F 1 =
                                                                     L
                   α/2
             − (−∆)   u(x, t) = −               πα           b 1 (µ) D u(x, t).  Similar to the procedures in
                                                                      µ
                                                                   C
                                2Γ(α)Γ(3 − α) cos                     t
                                                 2
                                                             Equation (11), we have Equation (12):
                (1 − α)(2 − α)u 0  (2 − α)
             ×                 +        (u 1 − u 0 )
                       q α         q α−1
                                                              Z  2                        L
               q−1                                                                     1  X
               X                                                       C  ν                       C  ν p
                                             2−α   2−α          b 2 (ν) D u(x, t)dν =     b 2 (ν p ) D u(x, t)
             +    (u q−i+1 − 2u q−i + u q−i−1 ) (i + 1)  − i              t                          t
                                                                1                     L
               i=0                                                                       p=0
               (1 − α)(2 − α)u M   (2 − α)                       h 2
                                                                     ′′
             +                 −           (u M − u M−1 )     −    F 2 (ν), ν ∈ (1, 2)
                  (M − q) α      (M − q) α−1                     24
               M−q−1                                       )                                             (12)
                X
                                                2−α   2−α                ′     ′
             +      (u q+i−1 − 2u q+i + u q+i+1 ) (i + 1)  − i  where ν p =  η  p−1 +η  p  for p = 1, . . . , L and con-
                                                                              2
                i=0                                           sidering the interval [η ′  , η ] with equal ampli-
                                                                                         ′
                                                        (9)             b−a         p−1  ′  p  ′
            in which ∆x =    b−a , x = x q = a + q∆x, u 0 =   tude h =   L  such that [η  p−1 , η ] ⊆ [1, 2] and
                                                                                               p
                             M                                          C  ν
            u(a, t) = u(x−q∆x, t), u 1 = u(a+∆x, t) = u(x−    F 2 = b 2 (ν) D u(x, t)
                                                                           t
                                                                                2
            (q − 1)∆x, t), . . . , u q−i = u(x − i∆x, t), . . . , u q =  Neglecting ◦(h ) in Equations (11) and (12),
            u(x, t) = u(a + q∆x, t)                           Equation (1) can be approximated as Equation
                                                              (13):
            3. Description of the numerical method               L                        L
                                                              1  X       C  µ p        1  X      C   ν p
            In this section, we present the discretization          b 1 (µ p ) D u(x, t) +  b 2 (ν p ) D u(x, t) =
                                                                                                    t
                                                                            t
                                                              L                        L
            method used for approximating the integral terms    p=0                      p=0
                                                                       α
            in the distributed-order fractional operator. The  − κ(−∆) 2 u(x, t) + f(x, t, u(x, t))
            proposed method utilized a quadrature rule to                                                (13)
                                                           538
   161   162   163   164   165   166   167   168   169   170   171