Page 167 - IJOCTA-15-3
P. 167

A numerical method for solving distributed-order multi-term time-fractional telegraph equations involving
                                µ p
                                              ν p
                By putting   C D u(x, t),  C D u(x, t), and
                                              t
                                t
                   α
            −(−∆) 2 u(x, t) into Equation (1), and showing            1  X        (∆t) −µ p      (∆t) −ν p
                                                                         L
                                                                  k
                 k
            by U ≈ u(x q , t k ), we acquire Equation (14):   T 2 (U ) =  L  b 1 (µ p ) Γ(2 − µ p )  + b 2 (ν p ) Γ(3 − ν p )  U q k
                                                                  q
                 q
                                                                        p=0
                                                                   L
                                                               1  X      (∆t) −ν p
                                                                                     k
               L                  k−1                         +      b 2 (ν p )(   (U − U  k−1 )
             1  X         (∆t)  −µ p X  k−j+1                   L          Γ(3 − ν p )  q  q
                                                   )
                  b 1 (µ p )        (U q   − U q k−j            p=0
             L           Γ(2 − µ p )
              p=0                 j=0                            1  X       (∆t)  −µ p X
                                                                                   k−1
                                                                   L
                                                              −      b 1 (µ p )(      (U  k−j+1  − U  k−j ))((j + 1) 1−µ p
                                       L                                               q       q
                                    1  X         (∆t) −ν p      L  p=0     Γ(2 − µ p )  j=1
             × ((j + 1) 1−µ p  − j 1−µ p )) +  b 2 (ν p )
                                    L           Γ(3 − ν p )                L               k−1
                                      p=0                                1  X       (∆t) −ν p X
                                                              − j 1−µ p )) −  b 2 (ν p )(     (U  k−j+1  − 2U  k−j
               k−1                                                      L          Γ(3 − ν p )  q        q
               X                                                          p=0              j=1
             ×    (U q k−j+1  − 2U q k−j  + U q k−j−1 )((j + 1) 2−ν p  − j 2−ν p ))                  −α
               j=0                                            + U q k−j−1 )((j + 1) 2−ν p  − j  2−ν p )) −  κ(∆x)  πα
                      κ(∆x) −α       (1 − α)(2 − α)U 0 k                                  2Γ(α)Γ(3 − α)cos(  2  )
             = −                 πα                              (1 − α)(2 − α)U k  (2 − α)
                                                                                               k
                 2Γ(α)Γ(3 − α)cos(  )       q α               ×                0  +     (U − U )
                                                                                           k
                                 2                                       α          α−1   1    0
                                                                        q          q
                                 q−1
               (2 − α)  k    k   X    k        k                             k
             +       (U − U ) +     (U q−i+1  − 2U q−i        + (1 − α)(2 − α)U M  −  (2 − α)  (U  k  − U  k  )
                       1
                            0
                q α−1                                               (M − q) α    (M − q) α−1  M   M−1
                                 i=0
                                        (1 − α)(2 − α)U k                                                (18)
                k          2−α    2−α                M
             + U     )[(i + 1)  − i  ] +                                                               0
                q−i−1                             α               Suppose the initial data has an error e as in
                                                                                                       q
                                           (M − q)
                                                              Equation (19)
                                        M−q−1
                 (2 − α)    k    k       X     k         k
             −           (U M  − U M−1 ) +   (U q+i−1  − 2U q+i
               (M − q) α−1                                             e 0           0
                                         i=0                           ψ = ψ(x q ) + e , q = 1, . . . , M  (19)
                                                                        q
                                                                                     q
                                     o
                                                 k
                k
                                                                             e k
                                                                       k
             +U q+i+1 )[(i + 1) 2−α  − i 2−α ] + f(x q , t k , U )  Let U and U are the solutions of Equations
                                                 q
                                                                              q
                                                                       q
                                                       (14)   (14) and (15). Therefore, it can be depicted as in
            under the conditions as in Equation (15):         Equation (20)
                                                                                                         e k
                                                                              k
                                                                                            k
               0
             U = ψ(q∆x), q = 0, 1, . . . , M,                  T 1 (e k+1 ) = T 2 (e ) + f(x q , t k , U ) − f(x q , t k , U )
                                                                                            q
               q
                                                                                                          q
                                                                   q
                                                                              q
                              k
               k
             U = φ 0 (k∆t), U M  = φ L (k∆t) k = 0, 1, . . . , N         k       k   e k                k (20)
               0
                                                       (15)   in which e q  = U − U    q  .  Also, let E   =
                                                                                q
                                                                            k
                                                                k
                                                              [e , e k+1 , . . . , e ], k  =  0, 1, 2, . . . , N and ∥
                                                                1  2        M
                                                                                    k
                                                              E k  ∥ ∞ = max 1≤m≤M |e |. In proving the main
            4. Convergence and stability                                            m
                                                              theorems of this manuscript, we consider the fol-
            The stability analysis, along with convergence,   lowing symbols in Equation (21):
            is obtained by the proposed numerical method,
            which is presented in Section 3. For simplicity,                  L
                                                                           1  X    b 1 (µ p )
            we can rewrite Equation (14) as follows in Equa-   ξ 1 (L, ∆t) =              (∆t) −µ p ,
            tion (16):                                                     L  p=0  Γ(2 − µ p )
                                                                                                         (21)
                                                                              L
                                                                           1  X          b 2 (ν p )  −ν p
                                  k
                                                k
                 T 1 (U q k+1 ) = T 2 (U ) + f(x q , t k , U )  (16)  ξ 2 (L, ∆t) =  L  b 1 (µ p ) Γ(3 − ν p ) (∆t)
                                  q
                                                q
                                                                             p=0
            where it can be expanded as in Equation (17):
                                                              4.1. Theorem
                         1  X  b 1 (µ p )(∆t)
                          L          −µ p                  Let f(x, t, u) be a Lipschitz map. Then, the nu-
            T 1 U (k+1)  =
                 q                                            merical method given by Equation (14) with ini-
                         L       Γ(2 − µ p )
                           p=0                                tial boundary conditions Equation (15) is uncon-
               b 2 (ν p )(∆t) −ν p  (k+1)  κ(∆x) −α
             +            U q   +                 πα         ditionally stable, that is
                 Γ(3 − ν p )     2Γ(α)Γ(3 − α) cos
                                                  2
               (

                q−1
                X     (k)      (k)   (k)                           n           0
             ×      U     − 2U   + U       (i + 1) 2−α  − i 2−α  ∥ E ∥ ∞ ≤ ϱ ∥ E ∥ ∞ , n = 0, 1, . . . , N  (22)
                      q−i+1   q−i    q−i−1
                i=0
                                                           ) where ϱ > 0 and independent of the step sizes.

               M−q−1
                       (k)      (k)   (k)       2−α   2−α       According to the conditions Equation (15),
                X
             +       U     − 2U   + U       (i + 1)  − i
                       q+i−1    q+i   q+i+1
                i=0                                           the inequality Equation (22) is satisfied for n = 0.
                                                       (17)   Suppose Equation (22) satisfies n = 1, . . . , k, as-
            and Equation (18):                                suming that z ∈ {1, 2, . . . , M} such that |e k+1 | =
                                                                                                       z
                                                           539
   162   163   164   165   166   167   168   169   170   171   172