Page 90 - IJOCTA-15-3
P. 90

C. D’Apice et .al. / IJOCTA, Vol.15, No.3, pp.449-463 (2025)

             10. Kogut PI, Kupenko OP, Uvarov NV. On increas-  28. Zhang M, Meng D, Pei Y, Wen J. Research
                ing of resolution of satellite images via their fu-  on image segmentation method based on im-
                sion with imagery at higher resolution. J Optimiz  proved Snake model. Multimedia Tools Appl.
                DiffEquat Appl. 2021;29(1):54-78.                 2024;83(5):13977-13994.
             11. Mumford D, Shah J. Optimal approximation     29. Ivanchuk N, Kogut PI, Kupenko O. Generalized
                by piecewise smooth functions and associated      active contour model in an anisotropic variable
                variational problems. Commun Pure Appl Math.      exponent Sobolev space. J Optimiz Diff Equat
                1989;42(5):577-685.                               Appl. 2024;32(1):1-32.
             12. Alvarez L, Lions PL, Morel J-M. Image selective  30. Kogut PI, Kohut Ya, Parfinovych N. Solvabil-
                smoothing and edge detection by nonlinear dif-    ity issues for some noncoercive and nonmonotone
                fusion. II. SIAM J Numer Anal. 1992;9(3):845-     parabolic
                866.                                              equations arising in the image denoising prob-
             13. Caselles V, Kimmel R, Sapiro G. Geodesic ac-     lems. J Optimiz Differ Equat Appl. 2022;30(2):19-
                tive contours. Int J Comput Vis. 1997;22(1):61-   48.
                79.                                           31. Kogut PI, Kohut Y, Manzo R. Fictitious controls
                                                                                        ˆ
             14. Chan T, Vese L. Active contours without edges.   and approximation of anA optimal control prob-
                IEEE Trans Image Process. 2001;10(2):266-277.     lem for Perona-Malik equation. J Optimiz Differ
             15. Alvarez L, Guichard F, Lions PL, Morel J-M. Ax-  Equat Appl. 2022;30(1):42-70.
                ioms and fundamental equations of image process-  32. Anzellotti G. Pairings between measures and
                ing. Arch Ration Mech Anal. 1993;123(3):199-257.  bounded functions and compensated compact-
             16. Catt´e F, Coll T, Lions PL, J-M. Image selective  ness. Ann di Matematica Pura ed Appl. 1983;
                smoothing and edge detection by nonlinear diffu-  135(IV): 293-318.
                sion. I. SIAM J Numer Anal. 1992;29(1):182-193.  33. Vese L. A study in the BV space of a denoising-
             17. Yang C, Weng G, Chen Y. Active contour model     deblurring variational problem. Appl Math Op-
                based on local Kullback-Leibler divergence for    tim. 2001;44:131-161.
                fast image segmentation. Eng Appl Artif Intell.  34. Ivanchuk N, Ivanchuk V. On PDE formulation
                2023;123:106472.                                  of the relaxed version of generalized active con-
             18. Han B, Wun Y. Active contour model for inho-     tour model in anisotropic Sobolev space. J Opti-
                mogenous image segmentation based on Jeffreys     miz Differ Equat Applicat. 2024; 32(2):118-136.
                divergence. Pattern Recognit. 2020;107: 1075202.  35. Aubert G, Kornprobst P. Mathematical Problems
             19. Yuan Y., He C. Adaptive active contours without  in Image Processing: Partial Differential Equa-
                edges. Math Comput Modell. 2012;55:1705-1721.     tions and the Calculus of Variations. New York:
             20. Kass M, Witkin A, Terzopoulos D. Snakes: active  Springer; 2006: 147.
                contour models. Int J Comput Vis. 1988;1(4):321-  36. Karami F, Meskine D, Sadik K. A new nonlocal
                331.                                              model for the restoration of textured images. J
             21. Dai L, Ding J, Yang J. Inhomogeneity-embedded    Appl Anal Comput. 2019;9(6):2070-2095.
                active contour for natural image segmentation.  37. Salgado AJ, Wise SM. Classical Numerical Anal-
                Pattern Recognit. 2015;48(8):2513-2529.           ysis: A Comprehensive Course. Cambridge Uni-
             22. Chen Y, Wu L, Wang G, Weng G, Chen H. An         versity Press; 2022.
                active contour model for image segmentation us-  38. Maple C. Geometric design and space planning
                ing morphology and nonlinear Poisson’s equation.  using the marching squares and marching cube
                Optik. 2023;287: 170997.                          algorithms. In: 2003 International Conference on
             23. Fang L, Liang X, Xu C, Wang Q. Image segmen-     Geometric Modeling and Graphics; 2003:90-95.
                tation using a novel dual active contour model.  39. Mantz  H,  Jacobs  K,  Mecke  K.  Utilizing
                Multimedia Tools Appl. 2024;83(2):3707-724.       Minkowski functionals for image analysis:  a
             24. Ge P, Chen Y, Wang G, Weng G. An active con-     marching square algorithm. J Stat Mech: Theory
                tour model based on Jeffreys divergence and clus-  Exp. 2008;12:12015.
                tering technology for image segmentation. J Vis  40. D’Apice C, Kogut PI, Kupenko O, Manzo R.
                Commun Image Represent. 2024;99:104069.           On variational problem with nonstandard growth
             25. Kon NA, Jumaat AK, Suhaizi MDA. Active con-      functional and its applications to image process-
                tour models for boundary extraction with appli-   ing. J Math Imaging Vis. 2023;65(3): 472-491.
                cation to medical images with noise. J Adv Res
                ApplSciEng Technol. 2024;33(2):300-312.
             26. Mazlin MS, Jumaat AK, Embong R. Partition-
                                                              Ciro D’Apice obtained the degree cum laude
                ing intensity inhomogeneity colour images via
                                                              in Mathematics in 1991 and the PhD in Math-
                Saliency-based active contour. Int J Elect Com-
                put Eng. 2024;14(1):337-346.                  ematics in 1997 at the University of Naples ”Fed-
             27. Suryana ME, Rizki M, Irzal M, Aryani R. Solving  erico II.” He is a Full Professor in Mathematical
                wound perimeter detection with active contour  Analysis at Dipartimento di Scienze Aziendali-
                model enhanced with interpolation. AIP Conf   Management & Innovation Systems (DISA-MIS),
                Proc. 2024;2982(1):060005.                    University of Salerno.   His research interests
                                                           462
   85   86   87   88   89   90   91   92   93   94   95