Page 194 - IJOCTA-15-4
P. 194
E.M. Shaban / IJOCTA, Vol.15, No.4, pp.728-737 (2025)
Author contributions hemivariational inequalities. Chaos Solitons Frac-
tals. 2024;188:115558.
Conceptualization: Saim Ahmed, Ahmad Taher
13. Ma Y-K, Raja MM, Nisar KS, Shukla A,
Azar
Vijayakumar V. Results on controllability for
Formal analysis: All authors sobolev type fractional dif- ferential equations
Investigation: Saim Ahmed, Ahmad Taher Azar of order 1¡ r¡ 2 with finite delay. AIMS Math.
Methodology: Saim Ahmed, Ahmad Taher Azar 2022;7(6):10215–10233.
Writing – original draft: Saim Ahmed 14. Raja MM, Vijayakumar V, Veluvolu KC, Shukla
Writing – review & editing: All authors A, Nisar KS. Existence and optimal control re-
sults for caputo fractional delay clark’s subdiffer-
Availability of data ential inclusions of order order r ∈ (1, 2) with
sectorial operators. Optim Control Appl Methods.
Not applicable. 2024;45(4):1832–1850.
15. Lavretsky E, Kevin W, Howe D. Robust and adap-
AI tools statement tive control with aerospace applications. England:
Springer- Verlag London, 2013.
All authors confirm that no AI tools were used in
16. Lewis FL, Dawson DM, Abdallah CT. Robot
the preparation of this manuscript.
manipulator control: Theory and practice. CRC
Press, 2003.
References
17. Zhou X, Tian Y, Wang H. Neural network state
1. Ajel AR. Robust model reference adaptive control observer-based robust adaptive fault-tolerant
for tail-sitter vtol aircraft. Actuators. 2021;10(7). quantized iterative learning control for the rigid-
2. Lavretsky E. Adaptive control: Introduction, flexible coupled robotic systems with unknown
overview, and applications. Lecture notes IEEE time delays. Appl Math Comput. 2022;430:127286.
Robust Adapt. Control Workshop 208; 2008. 18. Zhou X, Wang H, Wu K, Zheng G. Fixed-
3. Dan Z, Bin W. A review on model reference adap- time neural network trajectory tracking control
tive control of robotic manipulators. Annu Rev for the rigid-flexible coupled robotic mechanisms
Control. 2017;43:188–198. with large beam- deflections. Appl Math Model.
4. Xiao Shunli LJ, Yangmin L. A model reference 2023;118:665–691.
adaptive pid control for electromagnetic actu- 19. Ghazi, Farah F., and Luma NM Tawfiq. Design
ated micro-positioning stage. In 2012 IEEE Inter- optimal neural network based on new LM training
national Conference on Automation Science and algorithm for solving 3D-PDEs. An International
Engineering (CASE), IEEE, 2012;97–102. Journal of Optimization and Control: Theories &
5. Gol´ea N, Gol´ea A, Kadjoudj M. Nonlinear Applications (IJOCTA). 2024;14(3):249-260.
model reference adaptive control using takagi- 20. Wang Y, Yan F, Chen J, Ju F, Chen
sugeno fuzzy systems. J Intell Fuzzy Syst. B. A new adaptive time-delay con-
2006;17(1):47–57. trol scheme for cable-driven manip-
6. Guo L, Parsa L. Model reference adaptive control ulators. IEEE Trans Ind Informat.
of five-phase ipm motors based on neural network. 2018;15(6):3469–3481.
IEEE Trans Ind Electron. 2011;59(3):1500–1508. 21. Wang Y, Li B, Yan F, Chen B. Practi-
7. Wu C, Zhao J. H∞ adaptive tracking control for cal adaptive fractional-order nonsingular ter-
switched systems based on an average dwell-time minal sliding mode control for a cable-driven
method. Int J Syst Sci. 2015;46(14):2547–2559. manipulator. Int. J. Robust Nonlinear Control
8. Fang Y, Fei J, Ma K. Model reference adaptive 2019;29(5):1396–1417.
sliding mode control us- ing rbf neural network 22. Youcef-Toumi K, Wu S-T. Input/output
for active power filter. Int J Electr Power Energy linearization using time delay control.
Syst. 2015;73:249–258. 1992;114(1):10–19.
9. U¸cak K, Arslant¨urk BN. Adaptive mimo fuzzy pid 23. Long Y, Liu X, Yao C, Song E. Model-
controller based on peak observer. Int J Optim free adaptive full-order sliding mode control
Control Theor Appl. 2023;13(2). with time delay estimation of high- pres-
10. Ahmed S, Wang H, Tian Y. Modification to model sure common rail system. J Vib Control.
reference adaptive control of 5-link exoskeleton 2024;10775463241256225.
with gravity compensation. In 2016 35th Chinese 24. Ahmed S, Azar AT, Ibraheem IK. Model-free
Control Conference (CCC), 2016;6115–6120. scheme using time delay estimation with fixed-
11. Nguyen N, Summers E. On time delay margin es- time fsmc for the non- linear robot dynamics.
timation for adaptive control and robust modifi- AIMS Math. 2024;9(4):9989–10009.
cation adaptive laws. In AIAA Guidance, naviga- 25. Yadegari H, Beyramzad J, Khanmirza E.
tion, and control conference 2011;6438. Magnetorquers-based satellite attitude control us-
12. Raja MM, Vijayakumar V, Veluvolu KC. Im- ing interval type-ii fuzzy terminal sliding mode
proved order in hilfer fractional differential sys- control with time delay estimation. Adv Space Res
tems: Solvability and optimal control problem for 2022;69(8):3204–3225.
736

