Page 104 - ITPS-7-1
P. 104

INNOSC Theranostics and
            Pharmacological Sciences                                               Plants immunoactivity: In silico study



               review of the Withania somnifera (L.) Dunal: Ethnobotany,   17.  Ru J, Li P, Wang J, et al., 2014, TCMSP: A database of systems
               pharmacological  efficacy,  and  commercialization  pharmacology for drug discovery from herbal medicines.
               significance in Africa. Bull Natl Res Cent, 45: 176.   J Cheminform, 6: 13.
               https://doi.org/10.1186/s42269-021-00635-6         https://doi.org/10.1186/1758-2946-6-13
            6.   Surjushe A, Vasani R, Saple DG, 2008, Aloe vera: A short   18.  Aungst BJ, 2017, Optimizing oral bioavailability in drug
               review. Indian J Dermatol, 53: 163–166.            discovery: An overview of design and testing strategies and
                                                                  formulation options. J Pharm Sci, 106: 921–929.
               https://doi.org/10.4103/0019-5154.44785
                                                                  https://doi.org/10.1016/j.xphs.2016.12.002
            7.   Sánchez M, González-Burgos E, Iglesias I,  et al., 2020,
               Pharmacological  update  properties  of  Aloe vera  and its   19.  Yue SJ, Xin LT, Fan YC, 2017, Herb pair Danggui-Honghua:
               major active constituents. Molecules, 25: 1324.    Mechanisms underlying blood stasis syndrome by system
                                                                  pharmacology approach. Sci Rep, 7: 40318.
               https://doi.org/10.3390/molecules25061324
                                                                  https://doi.org/10.1038/srep40318
            8.   Rafei H, Haroun F, Tabbara IA, 2018, Novel
               immunotherapeutic agents for the treatment of multiple   20.  Lipinski CA, Dominy BW, Feeney PJ, 2012, Experimental
               myeloma. Am J Clin Oncol, 42: 317–329.             and computational approaches to estimate solubility and
                                                                  permeability in drug discovery and development settings.
               https://doi.org/10.1097/COC.0000000000000506
                                                                  Adv Drug Deliv Rev, 64: 4–17.
            9.   Rajkumar SV, Landgren O, Mateos MV, 2015, Smoldering      https://doi.org/10.1016/j.addr.2012.09.019
               multiple myeloma. Blood, 125: 3069–3075.
                                                               21.  Abdul-Hammed M, Adedotun IO, Falade VA,  et  al., 2021,
               https://doi.org/10.1182/blood-2014-09-568899
                                                                  Target-based  drug  discovery,  ADMET  profiling  and
            10.  Guillerey C, Nakamura K, Vuckovic S, et al., 2016, Immune   bioactivity studies of antibiotics as potential inhibitors of
               responses in multiple myeloma: Role of the natural immune   SARS-CoV-2 main protease (M ). Virusdisease, 32: 642–656.
                                                                                        pro
               surveillance and potential of immunotherapies. Cell Mol Life
               Sci, 73: 1569–1589.                                https://doi.org/10.1007/s13337-021-00717-z
                                                               22.  Keiser MJ, Roth BL, Armbruster BN, et al., 2007, Relating
               https://doi.org/10.1007/s00018-016-2135-z
                                                                  protein pharmacology by ligand chemistry. Nat Biotechnol,
            11.  Leelananda SP, Lindert S, 2016, Computational methods in   25: 197–206.
               drug discovery. Beilstein J Org Chem, 12: 2694–2718.
                                                                  https://doi.org/10.1038/nbt1284
               https://doi.org/10.3762/bjoc.12.267
                                                               23.  Daina A, Michielin O, Zoete V, 2019, SwissTargetPrediction:
            12.  Huang C, 2014, Systems pharmacology in drug discovery   Updated data and new features for efficient prediction of
               and therapeutic insight for herbal medicines.  Brief   protein targets of small molecules.  Nucleic Acids Res, 47:
               Bioinform, 15: 710–733.                            W357–W364.
               https://doi.org/10.1093/bib/bbt035                 https://doi.org/10.1093/nar/gkz382
            13.  Zhang R, Zhu X, Bai H, et al., 2019, Network pharmacology   24.  Wang X, Shen Y, Wang S, 2017, PharmMapper 2017 update:
               databases for traditional Chinese medicine: Review and   A web server for potential drug target identification with
               assessment. Front Pharmacol, 10: 123.              a comprehensive target pharmacophore database.  Nucleic
               https://doi.org/10.3389/fphar.2019.00123           Acids Res, 45: W356–W360.
            14.  Kibble M, Saarinen N, Tang J,  et al., 2015, Network      https://doi.org/10.1093/nar/gkx374
               pharmacology applications to map the unexplored target   25.  Gane PJ, Bateman A, Martin MJ, et al., 2014, UniProt: A hub
               space and therapeutic potential of natural products.  Nat   for protein information. Nucleic Acids Res, 43: D204–D212.
               Prod Rep, 32: 1249–1266.
                                                                  https://doi.org/10.1093/nar/gku989.
               https://doi.org/10.1039/c5np00005j
                                                               26.  Safran  M,  Dalah  I,  Alexander  J,  et al.,  2018,  GeneCards
            15.  Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, et al., 2018,   version 3: The human gene integrator. Database (Oxford),
               IMPPAT: A  curated database of Indian medicinal plants,   2010: baq020.
               phytochemistry and therapeutics. Sci Rep, 8: 4329.
                                                                  https://doi.org/10.1093/database/baq020
               https://doi.org/10.1038/s41598-018-22631-z
                                                               27.  Pinero  J, Bravo A,  Queralt-Rosinach  N,  et al., 2017,
            16.  Kim S, Chen J, Cheng T, et al., 2019, PubChem in 2021: New   DisGeNET: A  comprehensive platform integrating
               data content and improved web interfaces. Nucleic Acids Res,   information on human disease-associated genes and
               49: D1388–D1395.                                   variants. Nucleic Acids Res, 45: D833–D839.
               https://doi.org/10.1093/nar/gkaa971                https://doi.org/10.1093/nar/gkw943


            Volume 7 Issue 1 (2024)                         15                        https://doi.org/10.36922/itps.1076
   99   100   101   102   103   104   105   106   107   108   109