Page 49 - ITPS-7-2
P. 49

INNOSC Theranostics and
            Pharmacological Sciences                                                         Mitochondria and aging



                in a mouse model of heteroplasmic mtDNA mutation. Nat   Mol Ther Nucleic Acids. 2022;27:73-80.
                Med. 2018;24(11):1696-1700.
                                                                   doi: 10.1016/j.omtn.2021.11.016
                doi: 10.1038/s41591-018-0166-8
                                                               311.  Qi X, Chen X, Guo J,  et al. Precision modeling of
            300.  Gammage PA, Viscomi C, Simard ML,  et  al. Genome   mitochondrial disease in rats via DdCBE-mediated mtDNA
                editing in mitochondria corrects a pathogenic mtDNA   editing. Cell Discov. 2021;7(1):95.
                mutation in vivo. Nat Med. 2018;24(11):1691-1695.
                                                                   doi: 10.1038/s41421-021-00325-7
                doi: 10.1038/s41591-018-0165-9
                                                               312.  Nakazato I, Okuno M, Yamamoto H, et al. Targeted base
            301.  Yin T,  Luo J, Huang D, Li H. Current progress of   editing in the plastid genome of Arabidopsis thaliana. Nat
                mitochondrial genome editing by CRISPR. Front Physiol.   Plants. 2021;7(7):906-913.
                2022;13:883459.
                                                                   doi: 10.1038/s41477-021-00954-6
                doi: 10.3389/fphys.2022.883459
                                                               313.  Moraes CT. A magic bullet to specifically eliminate mutated
            302.  Pereira CV, Bacman SR, Arguello T,  et al. mitoTev‐  mitochondrial genomes from patients’ cells.  EMBO Mol
                TALE: A  monomeric DNA editing enzyme to reduce    Med. 2014;6(4):434-435.
                mutant mitochondrial DNA levels.  EMBO  Mol Med.
                2018;10(9):e8084.                                  doi: 10.1002/emmm.201303769
                doi: 10.15252/emmm.201708084                   314.  Hsu  PD, Scott  DA,  Weinstein  JA,  et al.  DNA targeting
                                                                   specificity of RNA-guided Cas9 nucleases. Nat Biotechnol.
            303.  Mok BY, de Moraes MH, Zeng J, et al. A bacterial cytidine   2013;31(9):827-832.
                deaminase toxin enables CRISPR-free mitochondrial base
                editing. Nature. 2020;583(7817):631-637.           doi: 10.1038/nbt.2647
                doi: 10.1038/s41586-020-2477-4                 315.  Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F.
                                                                   Genome engineering using the CRISPR-Cas9 system. Cell
            304.  Lee H, Lee S, Baek G, et al. Mitochondrial DNA editing in   Metab. 2013;8(11):2281-2308.
                mice with DddA-TALE fusion deaminases. Nat Commun.
                2021;12(1):1190.                                   doi: 10.1016/j.cmet.2018.02.011
                doi: 10.1038/s41467-021-21464-1                316.  Doudna JA, Charpentier E. The new frontier of
                                                                   genome  engineering  with  CRISPR-Cas9.  Science.
            305.  Silva-Pinheiro P, Minczuk M. The potential of mitochondrial   2014;346(6213):1258096.
                genome engineering. Nat Rev Genet. 2022;23(4):199-214.
                                                                   doi: 10.1126/science.1258096
                doi: 10.1038/s41576-021-00432-x
                                                               317.  Jo A, Ham S, Lee GH, et al. Efficient mitochondrial genome
            306.  Silva-Pinheiro  P,  Nash  PA,  Van  Haute  L,  Mutti  CD,   editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:305716.
                Turner K, Minczuk M. In vivo mitochondrial base editing
                via adeno-associated viral delivery to mouse post-mitotic      doi: 10.1155/2015/305716
                tissue. Nat Commun. 2022;13(1):750.            318.  Bian WP, Chen YL, Luo JJ, Wang C, Xie SL, Pei DS. Knock-in
                doi: 10.1038/s41467-022-28358-w                    strategy for editing human and zebrafish mitochondrial
                                                                   DNA  using  mito-CRISPR/Cas9  system.  ACS  Synth  Biol.
            307.  Wei Y, Xu C, Feng H, et al. Human cleaving embryos enable   2019;8(4):621-632.
                efficient mitochondrial base-editing with DdCBE.  Cell
                Discov. 2022;8(1):7.                               doi: 10.1021/acssynbio.8b00411
                doi: 10.1038/s41421-021-00372-0                319.  Hussain SRA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ.
                                                                   Adapting CRISPR/Cas9 system for targeting mitochondrial
            308.  Sabharwal A, Kar B, Restrepo-Castillo S, et al. The FusX   genome. Front Genet. 2021;12:627050.
                TALE  Base  Editor  (FusXTBE)  for  rapid  mitochondrial
                DNA programming of human cells in vitro and zebrafish      doi: 10.3389/fgene.2021.627050
                disease models in vivo. CRISPR J. 2021;4(6):799-821.  320.  Kauppila TE, Kauppila JH, Larsson NG. Mammalian
                doi: 10.1089/crispr.2021.0061                      mitochondria and aging: An update.  Cell Metab.
                                                                   2017;25(1):57-71.
            309.  Guo J, Zhang X, Chen X,  et al. Precision modeling of
                mitochondrial diseases in zebrafish via DdCBE-mediated      doi: 10.1016/j.cmet.2016.09.017
                mtDNA base editing. Cell Discov. 2021;7(1):78.
                                                               321.  Hirose M, Schilf P, Gupta Y, et al. Low-level mitochondrial
                doi: 10.1038/s41421-021-00307-9                    heteroplasmy modulates DNA replication, glucose
                                                                   metabolism and lifespan in mice. Sci Rep. 2018;8(1):5872.
            310.  Guo J, Chen X, Liu Z, et al. DdCBE mediates efficient and
                inheritable modifications in mouse mitochondrial genome.      doi: 10.1038/s41598-018-24290-6



            Volume 7 Issue 2 (2024)                         27                               doi: 10.36922/itps.1726
   44   45   46   47   48   49   50   51   52   53   54