Page 44 - ITPS-7-2
P. 44
INNOSC Theranostics and
Pharmacological Sciences Mitochondria and aging
Caenorhabditis elegans by a diet lacking coenzyme Q. 201. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB.
Science. 2002;295(5552):120-123. Intracellular α-ketoglutarate maintains the pluripotency of
embryonic stem cells. Nature. 2015;518(7539):413-416.
doi: 10.1126/science.1064653
190. Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal doi: 10.1038/nature13981
and tumor stem cells. Adv Cancer Res. 2014;22:1-67. 202. McReynolds MR, Chellappa K, Baur JA. Age-related NAD+
doi: 10.1016/B978-0-12-420117-0.00001-3 decline. Exp Gerontol. 2020;134:110888.
191. Chaudhari P, Ye Z, Jang YY. Roles of reactive oxygen doi: 10.1016/j.exger.2020.110888
species in the fate of stem cells. Antioxid Redox Signal. 203. Schultz MB, Sinclair DA. Why NAD+ declines during
2014;20(12):1881-1890. aging: It’s destroyed. Cell Metab. 2016;23(6):965-966.
doi: 10.1089/ars.2012.4963 doi: 10.1016/j.cmet.2016.05.022
192. Ezashi T, Das P, Roberts RM. Low O tensions and the 204. Cantó C, Sauve AA, Bai P. Crosstalk between poly (ADP-
2
prevention of differentiation of hES cells. Proc Natl Acad ribose) polymerase and sirtuin enzymes. Mol Aspects Med.
Sci. 2005;102(13):4783-4788. 2013;34(6):1168-1201.
doi: 10.1073/pnas.0501283102 doi: 10.1016/j.mam.2013.01.004
193. Shyh-Chang N, Daley GQ, Cantley LC. Stem cell 205. Petriti B, Williams PA, Lascaratos G, Chau KY, Garway-
metabolism in tissue development and aging. Development. Heath DF. Neuroprotection in glaucoma: NAD+/NADH
2013;140(12):2535-2547. redox state as a potential biomarker and therapeutic target.
doi: 10.1242/dev.091777 Cells 2021;10(6):1402.
194. Sauer H, Wartenberg M. Reactive oxygen species as doi: 10.3390/cells10061402
signaling molecules in cardiovascular differentiation of 206. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators
embryonic stem cells and tumor-induced angiogenesis. of metabolism and healthspan. Nat Rev Mol Cell Biol.
Antioxid Redox Signal. 2005;7(11-12):1423-1434. 2012;13(4):225-238.
doi: 10.1089/ars.2005.7.1423 doi: 10.1038/nrm3293
195. Ahlqvist KJ, Hämäläinen RH, Yatsuga S, et al. Somatic 207. Gomes AP, Price NL, Ling AJ, et al. Declining NAD+ induces
progenitor cell vulnerability to mitochondrial DNA a pseudohypoxic state disrupting nuclear-mitochondrial
mutagenesis underlies progeroid phenotypes in Polg communication during aging. Cell. 2013;155(7):1624-1638.
mutator mice. Cell Metab. 2012;15(1):100-109.
doi: 10.1016/j.cell.2013.11.037
doi: 10.1016/j.cmet.2011.11.012
208. Imai S, Guarente L. It takes two to tango: NAD+ and
196. Chen ML, Logan TD, Hochberg ML, et al. Erythroid sirtuins in aging/longevity control. NPJ Aging Mech Dis.
dysplasia, megaloblastic anemia, and impaired 2016;2(1):16017.
lymphopoiesis arising from mitochondrial dysfunction.
Blood. 2009;114(19):4045-4053. doi: 10.1038/npjamd.2016.17
doi: 10.1182/blood-2008-08-169474 209. Stein LR, Imai SI. Specific ablation of Nampt in adult neural
stem cells recapitulates their functional defects during
197. Hämäläinen RH, Ahlqvist KJ, Ellonen P, et al. mtDNA aging. EMBO J. 2014;33(12):1321-1340.
mutagenesis disrupts pluripotent stem cell function by
altering redox signaling. Cell Rep. 2015;11(10):1614-1624. doi: 10.1002/embj.201386917
doi: 10.1016/j.celrep.2015.05.009 210. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of
NAD-boosting molecules: The in vivo evidence. Cell Metab.
198. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. 2018;27(3):529-547.
Mol Cell. 2016;61(5):654-666.
doi: 10.1016/j.cmet.2018.02.011
doi: 10.1016/j.molcel.2016.01.028
211. Yoshino J, Mills KF, Yoon MJ, Imai SI. Nicotinamide
199. Frezza C. Mitochondrial metabolites: Undercover signalling mononucleotide, a key NAD+ intermediate, treats the
molecules. Interface Focus. 2017;7(2):20160100. pathophysiology of diet-and age-induced diabetes in mice.
doi: 10.1098/rsfs.2016.0100 Cell Metab. 2011;14(4):528-536.
200. Zhang H, Menzies KJ, Auwerx J. The role of doi: 10.1016/j.cmet.2011.08.014
mitochondria in stem cell fate and aging. Development. 212. Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2
2018;145(8):dev143420.
homolog SIRT3 regulates global mitochondrial lysine
doi: 10.1242/dev.143420 acetylation. Mol Cell Biol. 2007;27(24):8807-8814.
Volume 7 Issue 2 (2024) 22 doi: 10.36922/itps.1726

