Page 44 - ITPS-7-2
P. 44

INNOSC Theranostics and
            Pharmacological Sciences                                                         Mitochondria and aging



                Caenorhabditis elegans by a diet lacking coenzyme Q.   201.  Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB.
                Science. 2002;295(5552):120-123.                   Intracellular α-ketoglutarate maintains the pluripotency of
                                                                   embryonic stem cells. Nature. 2015;518(7539):413-416.
                doi: 10.1126/science.1064653
            190.  Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal      doi: 10.1038/nature13981
                and tumor stem cells. Adv Cancer Res. 2014;22:1-67.  202.  McReynolds MR, Chellappa K, Baur JA. Age-related NAD+
                doi: 10.1016/B978-0-12-420117-0.00001-3            decline. Exp Gerontol. 2020;134:110888.
            191.  Chaudhari P, Ye Z, Jang YY. Roles of reactive oxygen      doi: 10.1016/j.exger.2020.110888
                species  in  the  fate  of  stem  cells.  Antioxid Redox Signal.   203.  Schultz MB, Sinclair DA. Why NAD+ declines during
                2014;20(12):1881-1890.                             aging: It’s destroyed. Cell Metab. 2016;23(6):965-966.
                doi: 10.1089/ars.2012.4963                         doi: 10.1016/j.cmet.2016.05.022
            192.  Ezashi T, Das P, Roberts RM. Low O  tensions and the   204.  Cantó C, Sauve AA, Bai P. Crosstalk between poly (ADP-
                                             2
                prevention of differentiation of hES cells. Proc Natl Acad   ribose) polymerase and sirtuin enzymes. Mol Aspects Med.
                Sci. 2005;102(13):4783-4788.                       2013;34(6):1168-1201.
                doi: 10.1073/pnas.0501283102                       doi: 10.1016/j.mam.2013.01.004
            193.  Shyh-Chang N, Daley GQ, Cantley LC. Stem cell   205.  Petriti B, Williams PA, Lascaratos G, Chau KY, Garway-
                metabolism in tissue development and aging. Development.   Heath DF. Neuroprotection in glaucoma: NAD+/NADH
                2013;140(12):2535-2547.                            redox state as a potential biomarker and therapeutic target.
                doi: 10.1242/dev.091777                            Cells 2021;10(6):1402.
            194.  Sauer H, Wartenberg M. Reactive oxygen species as      doi: 10.3390/cells10061402
                signaling molecules in cardiovascular differentiation of   206.  Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators
                embryonic stem cells and tumor-induced angiogenesis.   of  metabolism  and  healthspan.  Nat Rev Mol Cell Biol.
                Antioxid Redox Signal. 2005;7(11-12):1423-1434.    2012;13(4):225-238.
                doi: 10.1089/ars.2005.7.1423                       doi: 10.1038/nrm3293
            195.  Ahlqvist KJ, Hämäläinen RH, Yatsuga S,  et  al. Somatic   207.  Gomes AP, Price NL, Ling AJ, et al. Declining NAD+ induces
                progenitor cell vulnerability to mitochondrial DNA   a pseudohypoxic state disrupting nuclear-mitochondrial
                mutagenesis underlies progeroid phenotypes in Polg   communication during aging. Cell. 2013;155(7):1624-1638.
                mutator mice. Cell Metab. 2012;15(1):100-109.
                                                                   doi: 10.1016/j.cell.2013.11.037
                doi: 10.1016/j.cmet.2011.11.012
                                                               208.  Imai S, Guarente L. It takes two to tango: NAD+ and
            196.  Chen  ML,  Logan TD,  Hochberg  ML,  et al.  Erythroid   sirtuins  in  aging/longevity  control.  NPJ Aging Mech Dis.
                dysplasia,  megaloblastic  anemia,  and  impaired  2016;2(1):16017.
                lymphopoiesis arising from mitochondrial dysfunction.
                Blood. 2009;114(19):4045-4053.                     doi: 10.1038/npjamd.2016.17
                doi: 10.1182/blood-2008-08-169474              209.  Stein LR, Imai SI. Specific ablation of Nampt in adult neural
                                                                   stem cells recapitulates their functional defects during
            197.  Hämäläinen RH, Ahlqvist KJ, Ellonen P,  et  al. mtDNA   aging. EMBO J. 2014;33(12):1321-1340.
                mutagenesis disrupts pluripotent stem cell function by
                altering redox signaling. Cell Rep. 2015;11(10):1614-1624.     doi: 10.1002/embj.201386917
                doi: 10.1016/j.celrep.2015.05.009              210.  Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of
                                                                   NAD-boosting molecules: The in vivo evidence. Cell Metab.
            198.  Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging.   2018;27(3):529-547.
                Mol Cell. 2016;61(5):654-666.
                                                                   doi: 10.1016/j.cmet.2018.02.011
                doi: 10.1016/j.molcel.2016.01.028
                                                               211.  Yoshino J, Mills KF, Yoon MJ, Imai SI. Nicotinamide
            199.  Frezza C. Mitochondrial metabolites: Undercover signalling   mononucleotide, a key NAD+ intermediate, treats the
                molecules. Interface Focus. 2017;7(2):20160100.    pathophysiology of diet-and age-induced diabetes in mice.
                doi: 10.1098/rsfs.2016.0100                        Cell Metab. 2011;14(4):528-536.
            200.  Zhang H, Menzies KJ, Auwerx J. The role of       doi: 10.1016/j.cmet.2011.08.014
                mitochondria in  stem cell fate and aging.  Development.   212.  Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2
                2018;145(8):dev143420.
                                                                   homolog SIRT3 regulates global mitochondrial lysine
                doi: 10.1242/dev.143420                            acetylation. Mol Cell Biol. 2007;27(24):8807-8814.


            Volume 7 Issue 2 (2024)                         22                               doi: 10.36922/itps.1726
   39   40   41   42   43   44   45   46   47   48   49