Page 45 - ITPS-7-2
P. 45

INNOSC Theranostics and
            Pharmacological Sciences                                                         Mitochondria and aging



                doi: 10.1128/mcb.01636-07                          mitochondrial dynamics, and mitophagy in the maturation
                                                                   of cardiomyocytes. Cells. 2021;10(9):2463.
            213.  Brown  K,  Xie  S,  Qiu  X,  et al.  SIRT3  reverses  aging-
                associated degeneration. Cell Rep. 2013;3(2):319-327.     doi: 10.3390/cells10092463
                doi: 10.1016/j.celrep.2013.01.005              225.  Hall AR, Burke N, Dongworth RK, Hausenloy DJ.
            214.  Shahriyari L, Komarova NL. Symmetric vs. asymmetric   Mitochondrial fusion and fission proteins: Novel
                stem cell divisions: An adaptation against cancer? PLoS   therapeutic targets for combating cardiovascular disease.
                One. 2013;8(10):e76195.                            Br J Pharmacol. 2014;171(8):1890-1906.
                doi: 10.1371/journal.pone.0076195                  doi: 10.1111/bph.12516
            215.  Evano B, Khalilian S, Le Carrou G, Almouzni G,   226.  Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial
                Tajbakhsh  S.  Dynamics  of  asymmetric  and  symmetric   fusion and fission: The fine-tune balance for cellular
                divisions of muscle stem cells  in vivo and on artificial   homeostasis. FASEB J. 2021;35(6):e21620.
                niches. Cell Rep. 2020;30(10):3195-3206.e7.        doi: 10.1096%2Ffj.202100067R
                doi: 10.1016/j.celrep.2020.01.097              227.  Lemasters JJ. Selective mitochondrial autophagy, or
            216.  Casas Gimeno G, Paridaen JTML. The symmetry of neural   mitophagy, as a targeted defense against oxidative stress,
                stem cell and progenitor divisions in the vertebrate brain.   mitochondrial dysfunction, and aging.  Rejuvenation Res.
                Front Cell Dev Biol. 2022;10:885269.               2005;8(1):3-5.
                doi: 10.3389/fcell.2022.885269                     doi: 10.1089/rej.2005.8.3
            217.  Yamashita YM, Yuan H, Cheng J, Hunt AJ. Polarity   228.  Ashrafi  G,  Schwarz  TL.  The  pathways  of  mitophagy  for
                in stem cell division: Asymmetric stem cell division   quality control and clearance of mitochondria. Cell Death
                in  tissue  homeostasis.  Cold Spring Harb Perspect Biol.   Differ. 2013;20(1):31-42.
                2010;2(1):a001313.                                 doi: 10.1038/cdd.2012.81
                doi: 10.1101/cshperspect.a001313               229.  Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively
            218.  Ito K, Suda T. Metabolic requirements for the maintenance   stabilized on impaired mitochondria to activate Parkin.
                of  self-renewing  stem  cells.  Nat Rev Mol Cell Biol.   PLoS Biol. 2010;8(1):e1000298.
                2014;15(4):243-256.                                doi: 10.1371/journal.pbio.1000298
                doi: 10.1038/nrm3772                           230.  Ma K, Zhang Z, Chang R,  et al. Dynamic PGAM5
            219.  Ito K, Carracedo A, Weiss D, et al. A PML–PPAR-δ pathway   multimers dephosphorylate BCL-xL or FUNDC1 to
                for fatty acid oxidation regulates hematopoietic stem cell   regulate mitochondrial and cellular fate. Cell Death Differ.
                maintenance. Nat Med. 2012;18(9):1350-1358.        2020;27(3):1036-1051.
                doi: 10.1038/nm.2882                               doi: 10.1038/s41418-019-0396-4
            220.  Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C.   231.  Schapira AH. Mitochondrial pathology in Parkinson’s
                Metabolic regulation of neurodifferentiation in the adult   disease. Mt Sinai J Med. 2011;78(6):872-881.
                brain. Cell Mol Life Sci. 2020;77:2483-2496.       doi: 10.1002/msj.20303
                doi: 10.1007/s00018-019-03430-9                232.  Batlevi Y, La Spada AR. Mitochondrial autophagy in neural
            221.  Angelopoulos I, Gakis G, Birmpas K,  et  al. Metabolic   function, neurodegenerative disease, neuron cell death, and
                regulation of the neural stem cell fate: Unraveling new   aging. Neurobiol Dis. 2011;43(1):46-51.
                connections, establishing new concepts.  Front Neurosci.      doi: 10.1016/j.nbd.2010.09.009
                2022;16:1009125.
                                                               233.  Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of
                doi: 10.3389/fnins.2022.1009125                    mitochondria in aging. Nat Aging. 2022;2(3):199-213.
            222.  Knobloch M, Braun SM, Zurkirchen L,  et al. Metabolic      doi: 10.1038/s43587-022-00191-2
                control of adult neural stem cell activity by Fasn-dependent
                lipogenesis. Nature. 2013;493(7431):226-230.   234.  Ryu  D,  Mouchiroud  L, Andreux  PA,  et al.  Urolithin  A
                                                                   induces mitophagy and prolongs lifespan in  C. elegans
                doi: 10.1038/nature11689                           and increases muscle function in rodents.  Nat Med.
            223.  Ma K, Chen G, Li W,  et al. Mitophagy, mitochondrial   2016;22(8):879-888.
                homeostasis, and cell fate. Front Cell Dev Biol. 2020;8:467.
                                                                   doi: 10.1038/nm.4132
                doi: 10.3389/fcell.2020.00467
                                                               235.  Rera M, Bahadorani S, Cho J, et al. Modulation of longevity
            224.  Ding  Q, Qi  Y, Tsang  SY. Mitochondrial  biogenesis,   and tissue homeostasis by the Drosophila PGC-1 homolog.


            Volume 7 Issue 2 (2024)                         23                               doi: 10.36922/itps.1726
   40   41   42   43   44   45   46   47   48   49   50