Page 47 - ITPS-7-2
P. 47

INNOSC Theranostics and
            Pharmacological Sciences                                                         Mitochondria and aging



            257.  Sarvari P, Sarvari P. Advances in nanoparticle-based   268.  Cheng  G, Zielonka  J, Dranka BP,  et al. Mitochondria-
                drug delivery in cancer treatment.  Glob Transl Med.   targeted drugs synergize with 2-deoxyglucose to trigger
                2023;2(2):0394.                                    breast cancer cell death. Cancer Res. 2012;72(10):2634-2644.
                doi: 10.36922/gtm.0394                             doi: 10.1158/0008-5472.can-11-3928
            258.  Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K.   269.  Zhang  D, Wen  L,  Huang  R,  Wang H,  Hu  X,  Xing  D.
                Advances of epigenetic biomarkers and epigenome    Mitochondrial specific  photodynamic therapy by rare-
                editing for early diagnosis in breast cancer. Int J Mol Sci.   earth  nanoparticles  mediated  near-infrared  graphene
                2022;23(17):9521.                                  quantum dots. Biomaterials. 2018;153:14-26.
                doi: 10.3390/ijms23179521                          doi: 10.1016/j.biomaterials.2017.10.034
            259.  Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K,   270.  Cheng  X,  Feng  D,  Lv  J,  et al.  Application  prospects  of
                Tekade RK. Employment of enhanced permeability and   triphenylphosphine-based  mitochondria-targeted  cancer
                retention effect (EPR): Nanoparticle-based precision tools   therapy. Cancers (Basel). 2023;15(3):666.
                for targeting of therapeutic and diagnostic agent in cancer.      doi: 10.3390/cancers15030666
                Mater Sci Eng C Mater Biol Appl. 2019;98:1252-1276.
                                                               271.  Dong L, Gopalan V, Holland O, Neuzil J. Mitocans revisited:
                doi: 10.1016/j.msec.2019.01.066                    Mitochondrial targeting as efficient anti-cancer therapy. Int
            260.  Zhang L, Chan JM, Gu FX,  et al. Self-assembled lipid   J Mol Sci. 2020;21(21):7941.
                polymer hybrid nanoparticles: A  robust drug delivery      doi: 10.3390/ijms21217941
                platform. ACS Nano. 2008;2(8):1696-1702.
                                                               272.  Cheng G, Zielonka J, McAllister DM, et al. Mitochondria-
                doi: 10.1021/nn800275r                             targeted vitamin E analogs inhibit breast cancer cell
            261.  Porporato PE, Filigheddu N, Pedro JMBS, Kroemer G,   energy metabolism and promote cell death. BMC Cancer.
                Galluzzi L. Mitochondrial metabolism and cancer. Cell Res.   2013;13(1):285.
                2018;28(3):265-280.                                doi: 10.1186/1471-2407-13-285
                doi: 10.1038/cr.2017.155                       273.  Battogtokh G, Choi YS, Kang DS,  et al. Mitochondria-
            262.  Pandey S, Nandi A, Basu S, Ballav N. Inducing endoplasmic   targeting drug conjugates for cytotoxic, anti-oxidizing
                reticulum stress in cancer cells using graphene oxide-based   and sensing purposes: Current strategies and future
                nanoparticles. Nanoscale Adv. 2020;2(10):4887-4894.  perspectives. Acta Pharm Sin B. 2018;8(6):862-880.
                doi: 10.1039/d0na00338g                            doi: 10.1016/j.apsb.2018.05.006
            263.  Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic   274.  Iacopetta D, Ceramella J, Rosano C, et al. N-Heterocyclic
                target. Nat Rev Drug Discov. 2019;18(12):923-948.  carbene-gold (I) complexes targeting actin polymerization.
                                                                   Appl Sci. 2021;11(12):5626.
                doi: 10.1038/s41573-019-0036-1
                                                                   doi: 10.3390/app11125626
            264.  Tabish  TA,  Hamblin  MR.  Mitochondria-targeted
                nanoparticles  (mitoNANO):  An  emerging  therapeutic   275.  Odyniec  ML,  Han HH,  Gardiner  JE,  et al.  Peroxynitrite
                shortcut for cancer. Biomater Biosyst. 2021;3:100023.  activated drug conjugate systems based on a coumarin
                                                                   scaffold toward the application of theranostics. Front Chem.
                doi: 10.1016/s0005-2728(98)00161-3                 2019;7:775.
            265.  Huang Y, Sun G, Sun X, et al. The potential of lonidamine      doi: 10.3389/fchem.2019.00775
                in combination with chemotherapy and physical therapy in
                cancer treatment. Cancers (Basel). 2020;12(11):3332.  276.  Cheng G, Zielonka J, Ouari O, et al. Mitochondria-targeted
                                                                   analogues of metformin exhibit enhanced antiproliferative
                doi: 10.3390/cancers12113332                       and  radiosensitizing  effects  in  pancreatic  cancer  cells.
            266.  Yang SK, Han YC, He JR,  et al. Mitochondria targeted   Cancer Res. 2016;76(13):3904-3915.
                peptide SS-31 prevent on cisplatin-induced acute kidney      doi: 10.1158/0008-5472.can-15-2534
                injury via regulating mitochondrial ROS-NLRP3 pathway.   277.  Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery
                Biomed Pharmacother. 2020;130:110521.
                                                                   of bioactive molecules to mitochondria in vivo. Proc Natl
                doi: 10.1016/j.biopha.2020.110521                  Acad Sci U S A. 2003;100(9):5407-5412.
            267.  Cheng G, Zhang Q, Pan J, et al. Targeting lonidamine to      doi: 10.1073/pnas.0931245100
                mitochondria mitigates lung tumorigenesis and brain   278.  Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted
                metastasis. Nat Commun. 2019;10(1):2205.
                                                                   triphenylphosphonium-based  compounds:  Syntheses,
                doi: 10.1038/s41467-019-10042-1                    mechanisms of action, and therapeutic and diagnostic


            Volume 7 Issue 2 (2024)                         25                               doi: 10.36922/itps.1726
   42   43   44   45   46   47   48   49   50   51   52