Page 88 - ITPS-8-3
P. 88
INNOSC Theranostics and
Pharmacological Sciences Activity of green-synthesized nanoparticles
resistance: A growing serious threat for global public health. Bignoumba M, Dikoumba AC, Onanga R. Trends in
Healthcare (Basel). 2023;11(13):1946. Escherichia coli and Klebsiella pneumoniae urinary tract
infections and antibiotic resistance over a 5-year period in
doi: 10.3390/healthcare11131946
Southeastern Gabon. Antibiotics. 2024;14(1):14.
18. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A.
Nanoparticles: Alternatives against drug-resistant doi: 10.3390/antibiotics14010014
pathogenic microbes. Molecules. 2016;21(7):836. 29. Mączyńska B, Frej-Mądrzak M, Sarowska J, Woronowicz, K,
doi: 10.3390/molecules21070836 Choroszy-Król I, Jama-Kmiecik A. Evolution of antibiotic
resistance in Escherichia coli and Klebsiella pneumoniae
19. Hwang C, Choi MH, Kim HE, Jeong SH, Park JU. Reactive clinical isolates in a multi-profile hospital over 5 years (2017-
oxygen species-generating hydrogel platform for enhanced 2021). J Clin Med. 2023;12(6):2414.
antibacterial therapy. NPG Asia Mater. 2022;14(1):72.
doi: 10.3390/jcm12062414
doi: 10.1038/s41427-022-00420-5
30. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN,
20. Jiang Y, Zheng W, Tran K, et al. Hydrophilic nanoparticles Salahuddin P. Nanoparticle formulations in the diagnosis
that kill bacteria while sparing mammalian cells reveal and therapy of Alzheimer’s disease. Int J Biol Macromol.
the antibiotic role of nanostructures. Nat Commun. 2019;130:515-526.
2022;13(1):197.
doi: 10.1016/j.ijbiomac.2019.02.156
doi: 10.1038/s41467-021- 27193-9
31. Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of
21. Aflakian F, Mirzavi F, Aiyelabegan HT, et al. Nanoparticles- nanoparticles: Current developments and limitations.
based therapeutics for the management of bacterial Environ Technol Innov. 2022;26:102336.
infections: A special emphasis on FDA approved products
and clinical trials. Eur J Pharm Sci. 2023;188:106515. doi: 10.1016/j.eti.2022.102336
doi: 10.1016/j.ejps.2023.106515 32. Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. Eco-
friendly greener synthesis of nanoparticles. Adv Pharm Bull.
22. Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, 2020;10(4):566-576.
Mishig-Ochir T. Antibacterial activity and characteristics
of silver nanoparticles biosynthesized from Carduus crispus. doi: 10.34172/apb.2020.067
Sci Rep. 2021;11(1):21047. 33. Jakinala P, Lingampally N, Hameeda B, et al. Silver
doi: 10.1038/s41598-021-00520-2 nanoparticles from insect wing extract: Biosynthesis and
evaluation for antioxidant and antimicrobial potential. PLoS
23. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver One. 2021;16(3):e0241729.
nanoparticles and their antibacterial applications. Int J Mol
Sci. 2021;22(13):7202. doi: 10.1371/journal.pone.0241729
doi: 10.3390/ijms22137202 34. Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver
nanoparticles: Review of antiviral properties, mechanism of
24. Ewunkem AJ, Williams ZJ, Johnson NS, Brittany JL, action and applications. Microorganisms. 2023;11(3):629.
Maselugbo A, Nowlin K. Exploring the “carpenter” as a
substrate for green synthesis: Biosynthesis and antimicrobial doi: 10.3390/microorganisms11030629
potential. Gene Protein Dis. 2023;2(4):2155. 35. More PR, Pandit S, Filippis AD, Franci G, Mijakovic I,
doi: 10.36922/gpd.2155 Galdiero M. Silver nanoparticles: Bactericidal and
mechanistic approach against drug resistant pathogens.
25. Ewunkem AJ, Johnson N, Beard AF, Tshimanga I, Justice B, Microorganisms. 2023;11(2):369.
Meixner J. Synthesis of silver nanoparticles from honeybees
and its antibacterial potential. Open J Med Microbiol. doi: 10.3390/microorganisms11020369
2024;14(1):77-92. 36. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The
doi: 10.4236/ojmm.2024.141007 antibacterial mechanism of silver nanoparticles and its
application in dentistry. Int J Nanomedicine. 2020;15:
26. Ewunkem AJ, Priester T, Williams D, et al. Rapid green 2555-2562.
synthesis of silver nanoparticles by Reishi and their
antibacterial activity and mechanisms. J Biomater doi: 10.2147/IJN.S246764
Nanobiotechnol. 2024;15(3):51-63. 37. Tymoszuk A, Kulus D. Silver nanoparticles induce genetic,
doi: 10.4236/jbnb.2024.153004 biochemical, and phenotype variation in chrysanthemum.
Plant Cell Tissue Organ Cult. 2020;143(2):331-344.
27. Ameer MA, Wasey A, Salen P. Escherichia coli (e Coli 0157
H7). Treasure Island: StatPearls Publishing. 2013; pp. 1-11. doi: 10.1007/s11240-020-01920-4
28. Mouanga-Ndzime Y, Bisseye C, Longo-Pendy NM, 38. Pan X, Yang Y, Zhang JR. Molecular basis of host specificity
Volume 8 Issue 3 (2025) 82 doi: 10.36922/ITPS025080007

