Page 88 - ITPS-8-3
P. 88

INNOSC Theranostics and
            Pharmacological Sciences                                           Activity of green-synthesized nanoparticles



               resistance: A growing serious threat for global public health.   Bignoumba M, Dikoumba AC, Onanga R. Trends in
               Healthcare (Basel). 2023;11(13):1946.              Escherichia coli and  Klebsiella pneumoniae urinary tract
                                                                  infections and antibiotic resistance over a 5-year period in
               doi: 10.3390/healthcare11131946
                                                                  Southeastern Gabon. Antibiotics. 2024;14(1):14.
            18.  Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A.
               Nanoparticles:  Alternatives  against  drug-resistant     doi: 10.3390/antibiotics14010014
               pathogenic microbes. Molecules. 2016;21(7):836.  29.  Mączyńska B, Frej-Mądrzak M, Sarowska J, Woronowicz, K,
               doi: 10.3390/molecules21070836                     Choroszy-Król I, Jama-Kmiecik A. Evolution of antibiotic
                                                                  resistance in  Escherichia coli and  Klebsiella pneumoniae
            19.  Hwang C, Choi MH, Kim HE, Jeong SH, Park JU. Reactive   clinical isolates in a multi-profile hospital over 5 years (2017-
               oxygen species-generating hydrogel platform for enhanced   2021). J Clin Med. 2023;12(6):2414.
               antibacterial therapy. NPG Asia Mater. 2022;14(1):72.
                                                                  doi: 10.3390/jcm12062414
               doi: 10.1038/s41427-022-00420-5
                                                               30.  Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN,
            20.  Jiang Y, Zheng W, Tran K, et al. Hydrophilic nanoparticles   Salahuddin P. Nanoparticle formulations in the diagnosis
               that kill bacteria while sparing mammalian cells reveal   and therapy of Alzheimer’s disease.  Int J Biol Macromol.
               the antibiotic role of nanostructures.  Nat Commun.   2019;130:515-526.
               2022;13(1):197.
                                                                  doi: 10.1016/j.ijbiomac.2019.02.156
               doi: 10.1038/s41467-021- 27193-9
                                                               31.  Ying S, Guan Z, Ofoegbu PC,  et al. Green synthesis of
            21.  Aflakian F, Mirzavi F, Aiyelabegan HT, et al. Nanoparticles-  nanoparticles: Current developments and limitations.
               based therapeutics for  the management of bacterial   Environ Technol Innov. 2022;26:102336.
               infections: A special emphasis on FDA approved products
               and clinical trials. Eur J Pharm Sci. 2023;188:106515.     doi: 10.1016/j.eti.2022.102336
               doi: 10.1016/j.ejps.2023.106515                 32.  Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. Eco-
                                                                  friendly greener synthesis of nanoparticles. Adv Pharm Bull.
            22.  Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N,   2020;10(4):566-576.
               Mishig-Ochir T. Antibacterial activity and characteristics
               of silver nanoparticles biosynthesized from Carduus crispus.      doi: 10.34172/apb.2020.067
               Sci Rep. 2021;11(1):21047.                      33.  Jakinala P, Lingampally N, Hameeda B,  et al. Silver
               doi: 10.1038/s41598-021-00520-2                    nanoparticles from insect wing extract: Biosynthesis and
                                                                  evaluation for antioxidant and antimicrobial potential. PLoS
            23.  Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver   One. 2021;16(3):e0241729.
               nanoparticles and their antibacterial applications. Int J Mol
               Sci. 2021;22(13):7202.                             doi: 10.1371/journal.pone.0241729
               doi: 10.3390/ijms22137202                       34.  Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver
                                                                  nanoparticles: Review of antiviral properties, mechanism of
            24.  Ewunkem AJ, Williams ZJ, Johnson NS, Brittany JL,   action and applications. Microorganisms. 2023;11(3):629.
               Maselugbo A, Nowlin K. Exploring the “carpenter” as a
               substrate for green synthesis: Biosynthesis and antimicrobial      doi: 10.3390/microorganisms11030629
               potential. Gene Protein Dis. 2023;2(4):2155.    35.  More PR, Pandit S, Filippis AD, Franci G, Mijakovic I,
               doi: 10.36922/gpd.2155                             Galdiero M. Silver nanoparticles: Bactericidal and
                                                                  mechanistic approach against drug resistant pathogens.
            25.  Ewunkem AJ, Johnson N, Beard AF, Tshimanga I, Justice B,   Microorganisms. 2023;11(2):369.
               Meixner J. Synthesis of silver nanoparticles from honeybees
               and its antibacterial potential.  Open J Med Microbiol.      doi: 10.3390/microorganisms11020369
               2024;14(1):77-92.                               36.  Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The
               doi: 10.4236/ojmm.2024.141007                      antibacterial mechanism of silver nanoparticles and its
                                                                  application in dentistry.  Int J Nanomedicine. 2020;15:
            26.  Ewunkem AJ, Priester T, Williams D,  et al. Rapid green   2555-2562.
               synthesis  of  silver  nanoparticles  by  Reishi  and  their
               antibacterial activity and mechanisms.  J  Biomater      doi: 10.2147/IJN.S246764
               Nanobiotechnol. 2024;15(3):51-63.               37.  Tymoszuk A, Kulus D. Silver nanoparticles induce genetic,
               doi: 10.4236/jbnb.2024.153004                      biochemical, and phenotype variation in chrysanthemum.
                                                                  Plant Cell Tissue Organ Cult. 2020;143(2):331-344.
            27.  Ameer MA, Wasey A, Salen P. Escherichia coli (e Coli 0157
               H7). Treasure Island: StatPearls Publishing. 2013; pp. 1-11.     doi: 10.1007/s11240-020-01920-4
            28.  Mouanga-Ndzime Y, Bisseye C, Longo-Pendy NM,   38.  Pan X, Yang Y, Zhang JR. Molecular basis of host specificity


            Volume 8 Issue 3 (2025)                         82                          doi: 10.36922/ITPS025080007
   83   84   85   86   87   88   89   90   91   92   93