Page 66 - JCTR-9-6
P. 66
430 Malakar et al. | Journal of Clinical and Translational Research 2023; 9(6): 423-432
Hematol Educ Program 2016;2016:348-55. [18] Sweet K, Komrokji R, Padron E, Cubitt CL, Turner JG,
[4] Cortes JE, Kantarjian HM. Acute Lymphoblastic Leukemia. Zhou J, et al. Phase I Clinical Trial of Selinexor in
A Comprehensive Review with Emphasis on Biology and Combination with Daunorubicin and Cytarabine in
Therapy. Cancer 1995;76:2393-417. Previously Untreated Poor-risk Acute Myeloid Leukemia.
[5] Faderl S, Jeha S, Kantarjian HM. The Biology and Clin Cancer Res 2020;26:54-60.
Therapy of Adult Acute Lymphoblastic Leukemia. Cancer [19] Fiedler W, Chromik J, Amberg S, Kebenko M, Thol F,
2003;98:1337-54. Schlipfenbacher V, et al. A Phase II Study of Selinexor
[6] Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Plus Cytarabine and Idarubicin in Patients with Relapsed/
Mesele BW, Haile DC, et al. New Approaches and Refractory Acute Myeloid Leukaemia. Br J Haematol
Procedures for Cancer Treatment: Current Perspectives. 2020;190:e169-73.
SAGE Open Med 2021;9:20503121211034366. [20] Argueta C, Kashyap T, Klebanov B, Unger TJ, Guo C,
[7] Deak D, Gorcea-Andronic N, Sas V, Teodorescu P, Harrington S, et al. Selinexor Synergizes with
Constantinescu C, Iluta S, et al. A Narrative Review of Dexamethasone to Repress mTORC1 Signaling and
Central Nervous System Involvement in Acute Leukemias. Induce Multiple Myeloma Cell Death. Oncotarget
Ann Transl Med 2021;9:68. 2018;9:25529-44.
[8] Fullmer A, O’Brien S, Kantarjian H, Jabbour E. Novel [21] Long H, Hou Y, Li J, Song C, Ge Z. Azacitidine is
Therapies for Relapsed Acute Lymphoblastic Leukemia. Synergistically Lethal with XPO1 Inhibitor Selinexor in
Curr Hematol Malig Rep 2009;4:148-56. Acute Myeloid Leukemia by Targeting XPO1/eIF4E/c-
[9] Hamid AB, Petreaca RC. Secondary Resistant Mutations MYC Signaling. Int J Mol Sci 2023;24:6816.
to Small Molecule Inhibitors in Cancer Cells. Cancers [22] Zhao C, Yang ZY, Zhang J, Li O, Liu SL, Cai C, et al.
(Basel) 2020;12:927. Inhibition of XPO1 with KPT-330 Induces Autophagy-
[10] Mansoori B, Mohammadi A, Davudian S, Shirjang S, dependent Apoptosis in Gallbladder Cancer by Activating
the p53/mTOR Pathway. J Transl Med 2022;20:434.
Baradaran B. The Different Mechanisms of Cancer
Drug Resistance: A Brief Review. Adv Pharm Bull [23] Saxton RA, Sabatini DM. mTOR Signaling in Growth,
2017;7:339-48. Metabolism, and Disease. Cell 2017;168:960-76.
[11] Balasubramanian SK, Azmi AS, Maciejewski J. Selective [24] Laplante M, Sabatini DM. mTOR Signaling at a Glance.
Inhibition of Nuclear Export: A Promising Approach J Cell Sci 2009;122:3589-94.
in the Shifting Treatment Paradigms for Hematological [25] Zoncu R, Efeyan A, Sabatini DM. mTOR: From Growth
Neoplasms. Leukemia 2022;36:601-12. Signal Integration to Cancer, Diabetes and Ageing. Nat
[12] Fung HY, Chook YM. Atomic Basis of CRM1-cargo Rev Mol Cell Biol 2011;12:21-35.
Recognition, Release and Inhibition. Semin Cancer Biol [26] Linke M, Fritsch SD, Sukhbaatar N, Hengstschläger M,
2014;27:52-61. Weichhart T. mTORC1 and mTORC2 as Regulators of Cell
[13] Emdal KB, Palacio-Escat N, Wigerup C, Eguchi A, Metabolism in Immunity. FEBS Lett 2017;591:3089-103.
Nilsson H, Bekker-Jensen DB, et al. Phosphoproteomics [27] Fruman DA. mTOR Signaling: New Networks for ALL.
of Primary AML Patient Samples Reveals Rationale for Blood 2016;127:2658-9.
AKT Combination Therapy and p53 Context to Overcome [28] Simioni C, Martelli AM, Zauli G, Melloni E, Neri LM.
Selinexor Resistance. Cell Rep 2022;40:111177. Targeting mTOR in Acute Lymphoblastic Leukemia. Cells
[14] Sellin M, Berg S, Hagen P, Zhang J. The Molecular 2019;8:190.
Mechanism and Challenge of Targeting XPO1 in Treatment [29] Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C,
of Relapsed and Refractory Myeloma. Transl Oncol Tabellini G, et al. Targeting the PI3K/Akt/mTOR Signaling
2022;22:101448. Pathway in B-precursor Acute Lymphoblastic Leukemia
[15] Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE, and its Therapeutic Potential. Leukemia 2014;28:739-48.
Vasconcelos MH. Multiple Myeloma: Available Therapies [30] Liberti MV, Locasale JW. The Warburg Effect: How does it
and Causes of Drug Resistance. Cancers (Basel) Benefit Cancer Cells? Trends Biochem Sci 2016;41:211-8.
2020;12:407. [31] Zheng J. Energy Metabolism of Cancer: Glycolysis
[16] Mo CC, Yee AJ, Midha S, Hartley-Brown MA, Nadeem O, Versus Oxidative Phosphorylation (Review). Oncol Lett
O’Donnel EK, et al. Selinexor: Targeting a Novel Pathway 2012;4:1151-7.
in Multiple Myeloma. EJHaem 2023;4:792-810. [32] Hay N. Reprogramming Glucose Metabolism in Cancer:
[17] Garzon R, Savona M, Baz R, Andreeff M, Gabrail N, Can it be Exploited for Cancer Therapy? Nat Rev Cancer
Gutierrez M, et al. A Phase 1 Clinical Trial of Single- 2016;16:635-49.
agent Selinexor in Acute Myeloid Leukemia. Blood [33] Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I,
2017;129:3165-74. Emuowhochere R. Biology of Glucose Metabolization in
DOI: http://dx.doi.org/10.18053/jctres.09.202306.23-00088

