Page 51 - MSAM-1-3
P. 51

Optimization of chemical admixtures for 3DCP

            Materials Science in Additive Manufacturing


            16.  Zhang Y, Zhang Y, Yang L, et al., 2021, Hardened properties   26.  Jones R, 2000, Design and Analysis of Experiments. 5  ed.
                                                                                                          th
               and durability of large-scale 3D printed cement-based   Hoboken: Wiley.
               materials. Mater Struct, 54: 45.
                                                                  https://doi.org/10.1002/qre.458
               https://doi.org/10.1617/s11527-021-01632-x
                                                               27.  Chen L, Zhang Z, Gong W, et al., 2015, Liang, Quantifying
            17.  Zhang Y, Zhang Y, Liu G, et al., 2018, Fresh properties of a novel   the effects of fuel compositions on GDI-derived particle
               3D printing concrete ink. Constr Build Mater, 174: 263–271.   emissions using the optimal mixture design of experiments.
                                                                  Fuel, 154: 252–260.
               https://doi.org/10.1016/j.conbuildmat.2018.04.115
                                                                  https://doi.org/10.1016/j.fuel.2015.03.081
            18.  Dressler  I,  Freund  N,  Lowke  D,  2020,  The  effect  of
               accelerator  dosage  on  fresh  concrete  properties  and  on   28.  Chen L, Liang Z, Liu H, et al., 2017, Sensitivity analysis of
               interlayer strength in shotcrete 3D printing.  Materials   fuel types and operational parameters on the particulate
               (Basel), 13: 13020374.                             matter emissions from an aviation piston engine burning
                                                                  heavy fuels. Fuel, 202: 520–528.
               https://doi.org/10.3390/ma13020374
                                                                  https://doi.org/10.1016/j.fuel.2017.04.052
            19.  Zhang C, Nerella VN, Krishna A, et al., 2021, Mix design
               concepts for 3D printable concrete: A review. Cem Concr   29.  Chen L, Liu Z, Sun P,  et al., 2015, Formulation of a fuel
               Compos, 122: 104155.                               spray SMD model at atmospheric pressure using Design of
               https://doi.org/10.1016/j.cemconcomp.2021.104155   Experiments (DoE). Fuel, 153: 355–360.
            20.  Yu S, Sanjayan J, Du H, 2022, Effects of cement mortar      https://doi.org/10.1016/j.fuel.2015.03.013
               characteristics on aggregate-bed 3D concrete printing. Addit   30.  Jiao D, Shi C, Yuan Q,  et al, (2018), Mixture design of
               Manuf, 58: 103024.                                 concrete using simplex centroid design method. Cem Concr
               https://doi.org/10.1016/j.addma.2022.103024        Compos, 89: 76–88.
            21.  Yu S, Du H, Sanjayan J, 2020, Aggregate-bed 3D Concrete      https://doi.org/10.1016/j.cemconcomp.2018.03.001
               Printing with Cement Paste Ink. Cem Concr Res, 136: 106169.   31.  Perrot A, Rangeard D, Pierre A, 2016, Structural built-up
               https://doi.org/10.1016/j.cemconres.2020.106169    of cement-based materials used for 3D-printing extrusion
                                                                  techniques. Mater Struct, 49: 1213–1220.
            22.  Wangler T, Pileggi R, Gürel S,  et al., 2022, A chemical
               process engineering look at digital concrete processes:      https://doi.org/10.1617/s11527-015-0571-0
               Critical step design, inline mixing, and scaleup. Cem Concr   32.  Lu B, Li M, Neng T, et al, (2021), Effect of printing parameters
               Res, 155: 106782.                                  on material distribution in spray-based 3D concrete printing
               https://doi.org/10.1016/j.cemconres.2022.106782    (S-3DCP), Autom Constr, 124: 103570.
            23.  Ramakrishnan S, Kanagasuntharam S, Sanjayan J, 2022,      https://doi.org/10.1016/j.autcon.2021.103570
               In-line activation of cementitious materials for 3D concrete   33.  Roussel N, 2007, A theoretical frame to study stability of
               printing. Cem Concr Compos, 131: 104598.           fresh concrete. Mater Struct, 39: 81–91.
               https://doi.org/10.1016/j.cemconcomp.2022.104598     https://doi.org/10.1617/s11527-005-9036-1
            24.  Rubio-Hernández FJ, Adarve-Castro A,  Velázquez-  34.  Wu  D,  Cai SJ,  Huang  G,  2014,  Coupled  effect  of  cement
               Navarro  JF, et al., 2020, Influence of water/cement ratio, and   hydration and temperature on rheological properties of
               type and concentration of chemical additives on the static   fresh cemented tailings backfill slurry. Trans Nonferrous Met
               and dynamic yield stresses of Portland cement paste. Constr   Soc China, 24: 2954–2963.
               Build Mater, 235: 117744.
                                                                  https://doi.org/10.1016/S1003-6326(14)63431-2
               https://doi.org/10.1016/j.conbuildmat.2019.117744
                                                               35.  Chen M, Liu B, Li L,  et al., 2020, Cheng, Rheological
            25.  Liu JC, Tan KH, Zhang D, 2017, Multi-response optimization   parameters, thixotropy and creep of 3D-printed calcium
               of post-fire performance of strain hardening cementitious   sulfoaluminate cement composites modified by bentonite,
               composite. Cem Concr Compos, 80: 80–90.            Compos. Part B Eng, 186: 107821.
               https://doi.org/10.1016/j.cemconcomp.2017.03.001     https://doi.org/10.1016/j.compositesb.2020.107821











            Volume 1 Issue 3 (2022)                         12                     https://doi.org/10.18063/msam.v1i3.16
   46   47   48   49   50   51   52   53   54   55   56