Page 41 - MSAM-2-3
P. 41

Materials Science in Additive Manufacturing                            Cast and 3D-printed fiber orientations



               machine learning-based extrudate geometry control. Virtual   strength enhancement in 3D concrete printing.  Autom
               Phys Prototyp, 15: 178–193.                        Constr, 123: 103546.
               https://doi.org/10.1080/17452759.2020.1713580      https://doi.org/10.1016/j.autcon.2020.103546
            15.  Weng  Y, Li  M,  Liu  Z,  et al.,  2019, Printability  and fire   24.  Weng Y, Ahamed NA, Lee BJ, et al., 2021, Extracting BIM
               performance of a developed 3D printable fibre reinforced   information for lattice Toolpath planning in digital concrete
               cementitious composites under elevated temperatures.   printing with developed dynamo script: A  case study.
               Virtual Phys Prototyp, 14: 284–292.                J Comput Civ Eng, 35: 05021001.
               https://doi.org/10.1080/17452759.2018.1555046      https://doi.org/10.1061/(ASCE)CP.1943-5487.0000964
            16.  Li VC, Bos FP, Yu K,  et al., 2020, On the emergence of   25.  Ranade R, Stults MD, Lee B,  et al., 2012, Effects of fiber
               3D  printable  engineered,  strain  hardening  cementitious   dispersion and flaw size distribution on the composite
               composites (ECC/SHCC). Cem Concr Res, 132: 106038.  properties of PVA-ECC. In: High Performance Fiber
               https://doi.org/10.1016/j.cemconres.2020.106038    Reinforced Cement Composites. Dordrecht: Springer.
                                                                  p. 107–114.
            17.  Weng Y, Lu B, Li M, et al., 2018, Empirical models to predict
               rheological properties of fiber reinforced cementitious   26.  Torigoe S, Horikoshi T, Ogawa A,  et al., 2003, Study on
               composites for 3D printing. Constr Build Mater, 189: 676–685.  evaluation method for PVA fiber distribution in engineered
                                                                  cementitious composite. J Adv Concr Technol, 1: 265–268.
               https://doi.org/10.1016/j.conbuildmat.2018.09.039
                                                                  https://doi.org/10.3151/jact.1.265
            18.  Weng Y, Li M, Tan MJ,  et al., 2018, Design 3D printing
               cementitious materials via Fuller Thompson theory and   27.  Suuronen JP, Kallonen A, Eik M, et al., 2013, Analysis of
               Marson-Percy model. Constr Build Mater, 163: 600–610.  short fibres orientation in steel fibre-reinforced concrete
                                                                  (SFRC) by X-ray tomography. J Mater Sci, 48: 1358–1367.
               https://doi.org/10.1016/j.conbuildmat.2017.12.112
                                                                  https://doi.org/10.1007/s10853-012-6882-4
            19.  Weng  Y,  Ruan  S,  Li  M,  et al.,  2019,  Feasibility  study  on
               sustainable magnesium potassium phosphate cement paste   28.  Tosun-Felekoǧlu K, Felekoǧlu B, Ranade R, et al., 2014, The
               for 3D printing. Constr Build Mater, 221: 595–603.  role of flaw size and fiber distribution on tensile ductility of
                                                                  PVA-ECC. Compos B Eng, 56: 536–545.
               https://doi.org/10.1016/j.conbuildmat.2019.05.053
                                                                  https://doi.org/10.1016/j.compositesb.2013.08.089
            20.  Li M, Weng Y, Liu Z, et al., 2022, Optimizing of chemical
               admixtures for 3D printable cementitious materials by   29.  Ruan S, Qiu J, Weng Y, et al., 2019, The use of microbial
               central composite design. Mater Sci Addit Manuf, 1: 16.  induced carbonate precipitation in healing cracks within
                                                                  reactive magnesia cement-based blends.  Cem Concr Res,
               https://doi.org/10.18063/msam.v1i3.16              115: 176–188.
            21.  Weng Y, Li M, Zhang D, et al., 2021, Investigation of interlayer      https://doi.org/10.1016/j.cemconres.2018.10.018
               adhesion of 3D printable cementitious material from the
               aspect of printing process. Cem Concr Res, 143: 106386.  30.  Lee BY, Kim JK, Kim JS, et al., 2009, Quantitative evaluation
                                                                  technique of polyvinyl alcohol (PVA) fiber dispersion in
               https://doi.org/10.1016/j.cemconres.2021.106386    engineered cementitious composites.  Cem Concr Compos,
            22.  Weng Y, Li M, Ruan S, et al., 2020, Comparative economic,   31: 408–417.
               environmental and productivity assessment of a concrete      https://doi.org/10.1016/j.cemconcomp.2009.04.002
               bathroom unit fabricated through 3D printing and a precast
               approach. J Clean Prod, 261: 121245.            31.  Weng Y, Lu B, Tan MJ, et al., 2016, Rheology and Printability
                                                                  of Engineered Cementitious Composites-a Literature
               https://doi.org/10.1016/j.jclepro.2020.121245
                                                                  Review. In: Proceedings of the 2  International Conference
                                                                                          nd
            23.  Weng Y, Li M, Wong TN, et al., 2021, Synchronized concrete   on Progress in Additive Manufacturing (Pro-AM 2016).
               and bonding agent deposition system for interlayer bond   p. 427–432.















            Volume 2 Issue 3 (2023)                         17                      https://doi.org/10.36922/msam.1603
   36   37   38   39   40   41   42   43   44   45   46