Page 41 - MSAM-2-3
P. 41
Materials Science in Additive Manufacturing Cast and 3D-printed fiber orientations
machine learning-based extrudate geometry control. Virtual strength enhancement in 3D concrete printing. Autom
Phys Prototyp, 15: 178–193. Constr, 123: 103546.
https://doi.org/10.1080/17452759.2020.1713580 https://doi.org/10.1016/j.autcon.2020.103546
15. Weng Y, Li M, Liu Z, et al., 2019, Printability and fire 24. Weng Y, Ahamed NA, Lee BJ, et al., 2021, Extracting BIM
performance of a developed 3D printable fibre reinforced information for lattice Toolpath planning in digital concrete
cementitious composites under elevated temperatures. printing with developed dynamo script: A case study.
Virtual Phys Prototyp, 14: 284–292. J Comput Civ Eng, 35: 05021001.
https://doi.org/10.1080/17452759.2018.1555046 https://doi.org/10.1061/(ASCE)CP.1943-5487.0000964
16. Li VC, Bos FP, Yu K, et al., 2020, On the emergence of 25. Ranade R, Stults MD, Lee B, et al., 2012, Effects of fiber
3D printable engineered, strain hardening cementitious dispersion and flaw size distribution on the composite
composites (ECC/SHCC). Cem Concr Res, 132: 106038. properties of PVA-ECC. In: High Performance Fiber
https://doi.org/10.1016/j.cemconres.2020.106038 Reinforced Cement Composites. Dordrecht: Springer.
p. 107–114.
17. Weng Y, Lu B, Li M, et al., 2018, Empirical models to predict
rheological properties of fiber reinforced cementitious 26. Torigoe S, Horikoshi T, Ogawa A, et al., 2003, Study on
composites for 3D printing. Constr Build Mater, 189: 676–685. evaluation method for PVA fiber distribution in engineered
cementitious composite. J Adv Concr Technol, 1: 265–268.
https://doi.org/10.1016/j.conbuildmat.2018.09.039
https://doi.org/10.3151/jact.1.265
18. Weng Y, Li M, Tan MJ, et al., 2018, Design 3D printing
cementitious materials via Fuller Thompson theory and 27. Suuronen JP, Kallonen A, Eik M, et al., 2013, Analysis of
Marson-Percy model. Constr Build Mater, 163: 600–610. short fibres orientation in steel fibre-reinforced concrete
(SFRC) by X-ray tomography. J Mater Sci, 48: 1358–1367.
https://doi.org/10.1016/j.conbuildmat.2017.12.112
https://doi.org/10.1007/s10853-012-6882-4
19. Weng Y, Ruan S, Li M, et al., 2019, Feasibility study on
sustainable magnesium potassium phosphate cement paste 28. Tosun-Felekoǧlu K, Felekoǧlu B, Ranade R, et al., 2014, The
for 3D printing. Constr Build Mater, 221: 595–603. role of flaw size and fiber distribution on tensile ductility of
PVA-ECC. Compos B Eng, 56: 536–545.
https://doi.org/10.1016/j.conbuildmat.2019.05.053
https://doi.org/10.1016/j.compositesb.2013.08.089
20. Li M, Weng Y, Liu Z, et al., 2022, Optimizing of chemical
admixtures for 3D printable cementitious materials by 29. Ruan S, Qiu J, Weng Y, et al., 2019, The use of microbial
central composite design. Mater Sci Addit Manuf, 1: 16. induced carbonate precipitation in healing cracks within
reactive magnesia cement-based blends. Cem Concr Res,
https://doi.org/10.18063/msam.v1i3.16 115: 176–188.
21. Weng Y, Li M, Zhang D, et al., 2021, Investigation of interlayer https://doi.org/10.1016/j.cemconres.2018.10.018
adhesion of 3D printable cementitious material from the
aspect of printing process. Cem Concr Res, 143: 106386. 30. Lee BY, Kim JK, Kim JS, et al., 2009, Quantitative evaluation
technique of polyvinyl alcohol (PVA) fiber dispersion in
https://doi.org/10.1016/j.cemconres.2021.106386 engineered cementitious composites. Cem Concr Compos,
22. Weng Y, Li M, Ruan S, et al., 2020, Comparative economic, 31: 408–417.
environmental and productivity assessment of a concrete https://doi.org/10.1016/j.cemconcomp.2009.04.002
bathroom unit fabricated through 3D printing and a precast
approach. J Clean Prod, 261: 121245. 31. Weng Y, Lu B, Tan MJ, et al., 2016, Rheology and Printability
of Engineered Cementitious Composites-a Literature
https://doi.org/10.1016/j.jclepro.2020.121245
Review. In: Proceedings of the 2 International Conference
nd
23. Weng Y, Li M, Wong TN, et al., 2021, Synchronized concrete on Progress in Additive Manufacturing (Pro-AM 2016).
and bonding agent deposition system for interlayer bond p. 427–432.
Volume 2 Issue 3 (2023) 17 https://doi.org/10.36922/msam.1603

