Page 29 - MSAM-3-4
P. 29

Materials Science in Additive Manufacturing                           Additive manufacturing of active optics



               doi: 10.1038/s41467-021-24751-z                    doi: 10.1364/OME.399392
            55.  Li B, Wang S, Chen J,  et  al.  3D  Printing  of  LuAG:  Ce   66.  Luo X. Subwavelength artificial structures: Opening a new
               transparent ceramics for laser-driven lighting.  Ceram Int.   era for engineering optics. Adv Mater. 2019;31(4):1804680.
               2023;49(23):38708-38716.
                                                                  doi: 10.1002/adma.201804680
               doi: 10.1016/j.ceramint.2023.09.207
                                                               67.  Khonina  S,  Kazanskiy  N,  Butt  M.  Exploring  diffractive
            56.  Tong  NB,  Dung  CT,  Hanh  TTK,  et al. Intense green   optical elements and their potential in free space optics
               upconversion in core‑shell structured NaYF4: Er, Yb@ SiO2   and imaging‐a comprehensive review.  Laser Photon Rev.
               microparticles for anti-counterfeiting printing. Ceram Int.   2024:2400377.
               2023;49(17):28484-28491.                           doi: 10.1002/lpor.202400377
               doi: 10.1016/j.ceramint.2023.06.105             68.  Ocier CR, Richards CA, Bacon‑Brown DA, et al. Direct laser

            57.  Yoo J, Lee K, Yang UJ,  et al.  Highly  efficient  printed   writing of volumetric gradient index lenses and waveguides.
               quantum  dot  light-emitting  diodes  through  ultrahigh-  Light Sci Appl. 2020;9(1):196.
               definition double-layer transfer printing.  Nat Photon.      doi: 10.1038/s41377-020-00431-3
               2024;18(10):1105-1112.
                                                               69.  Orange Kedem R, Opatovski N, Xiao D, et al. Near index
               doi: 10.1038/s41566-024-01496-x                    matching enables solid diffractive optical element fabrication
            58.  Liu  SF,  Hou  ZW,  Lin  L,  et al. 3D nanoprinting of   via additive manufacturing. Light Sci Appl. 2023;12(1):222.
               semiconductor quantum dots by photoexcitation-induced      doi: 10.1038/s41377-023-01277-1
               chemical bonding. Science. 2022;377(6610):1112-1116.
                                                               70.  Yulaev  A,  Zhu  W,  Zhang  C,  et  al.  Metasurface-integrated
               doi: 10.1126/science.abo5345                       photonic platform  for versatile free-space beam projection
            59.  Long J, Chen X, Mao T, et al. Laser direct writing of sol–gel-  with polarization control. ACS Photon. 2019;6(11):2902-2909.
               derived vacancy-rich functional oxide semiconductors. ACS      doi: 10.1021/acsphotonics.9b01000
               nano. 2023;17(11):10033-10340.
                                                               71.  Hu T, Zhang M, Mei H, Chang P, Wang X, Cheng L. 3D
               doi: 10.1021/acsnano.2c12163                       printing technology toward state‐of‐the‐art photoelectric
            60.  Huang X, Guo Q, Yang D, et al. Reversible 3D laser printing   devices. Adv Mater Technol. 2023;8(4):2200827.
               of perovskite quantum dots inside a transparent medium.      doi: 10.1002/admt.202200827
               Nat Photon. 2020;14(2):82-88.
                                                               72.  Hu  G,  Albrow‑Owen  T,  Jin  X,  et al. Black phosphorus
               doi: 10.1038/s41566-019-0538-8                     ink formulation for inkjet printing of optoelectronics and
            61.  Loke  G,  Yuan  R,  Rein  M,  et al. Structured multimaterial   photonics. Nat Commun. 2017;8(1):278.
               filaments for 3D printing of optoelectronics. Nat Commun.      doi: 10.1038/s41467-017-00358-1
               2019;10(1):4010.
                                                               73.  Li  Q,  Zhao  H,  Yang  D,  et al. Direct  in situ fabrication of
               doi: 10.1038/s41467-019-11986-0                    multicolor afterglow carbon dot patterns with transparent
            62.  Wang W, Ouaras K, Rutz AL, et al. Inflight fiber printing   and traceless features via laser direct writing.  Nano Lett.
               toward array and 3D optoelectronic and sensing     2024;24(10):3028-3035.
               architectures. Sci Adv. 2020;6(40):eaba0931.       doi: 10.1021/acs.nanolett.3c04192
               doi: 10.1126/sciadv.aba0931                     74.  Chang  Z,  Deng  W,  Ren  X,  et al.  High‑speed  printing  of
            63.  Kotz F, Quick AS, Risch P, et al. Two‐photon polymerization   narrow‑band‑gap  Sn‑  Pb  perovskite  layers  toward  cost‑
               of nanocomposites for the fabrication of transparent fused   effective manufacturing of optoelectronic devices. ACS Appl
               silica glass microstructures. Adv Mater. 2021;33(9):2006341.  Mater Interfaces. 2023;15(26):32037-32046.
               doi: 10.1002/adma.202006341                        doi: 10.1021/acsami.3c06098
            64.  Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz‐Helmer F.   75.  An J, Le TSD, Lim CHJ, et al. Single‐step selective laser writing
               High‐resolution structuring of silica‐based nanocomposites   of flexible photodetectors for wearable optoelectronics. Adv
               for the fabrication of transparent multicomponent glasses   Sci. 2018;5(8):1800496.
               with adjustable properties. Adv Mater. 2024;36:e2407630.     doi: 10.1002/advs.201800496
               doi: 10.1002/adma.202407630                     76.  Butt  MA,  Mateos  X.  Strategic  insights  into  integrated
            65.  Weber  K,  Werdehausen  D,  König  P,  et  al. Tailored   photonics: Core concepts, practical deployments, and future
               nanocomposites for 3D printed micro-optics.  Opt Mater   outlook. Appl Sci. 2024;14(14):6365.
               Express. 2020;10(10):2345-2355.                    doi: 10.3390/app14146365


            Volume 3 Issue 4 (2024)                         23                             doi: 10.36922/msam.5748
   24   25   26   27   28   29   30   31   32   33   34