Page 31 - MSAM-3-4
P. 31

Materials Science in Additive Manufacturing                           Additive manufacturing of active optics



               large objects with high resolution by dynamic projection   short-pulse micro-laser based on upconversion nanoparticles.
               scanning lithography. Micromachines. 2023;14(9):1700.  Nanoscale. 2021;13(2):878-885.
               doi: 10.3390/mi14091700                            doi: 10.1039/D0NR06232D
            99.  Binyamin I, Grossman E, Gorodnitsky M, Kam D,   109. Roy  NK,  Behera  D,  Dibua  OG,  Foong  CS,  Cullinan  MA.
               Magdassi  S. 3D printing thermally stable high-performance   A novel microscale selective laser sintering (μ-SLS) process
               polymers based on a dual curing mechanism.  Adv Funct   for the fabrication of microelectronic parts.  Microsyst
               Mater. 2023;33(24):2214368.                        Nanoeng. 2019;5(1):64.
               doi: 10.1002/adfm.202214368                        doi: 10.1038/s41378-019-0116-8
            100. Huang J, Zhang B, Xiao J, Zhang Q. An approach to improve   110. Goetzendorfer B, Mohr T, Hellmann R. Hybrid approaches
               the resolution of DLP 3D printing by parallel mechanism.   for selective laser sintering by building on dissimilar
               Appl Sci. 2022;12(24):12905.                       materials. Materials. 2020;13(22):5285.
               doi: 10.3390/app122412905                          doi: 10.3390/ma13225285
            101. Dannenberg PH, Liapis AC, Martino N, Sarkar D, Kim KH,   111. Jeong  HY,  Lee  E,  An  SC,  Lim  Y,  Jun  YC.  3D  and  4D
               Yun SH. Facile layer‑by‑layer fabrication of semiconductor   printing for optics and metaphotonics.  Nanophotonics.
               microdisk laser particles. APL Photon. 2023;8(2):0213301.  2020;9(5):1139-1160.
               doi: 10.1063/5.0130792                             doi: 10.1515/nanoph-2019-0483
            102. Wei P, Cipriani C, Hsieh CM, Kamani K, Rogers S, Pentzer  E.   112. Jung NT, Chen PR, Ho SJ, Tung CC, Chen PY, Chen HS. 3D
               Go with the flow: Rheological requirements for direct ink   quantum dot-lens fabricated by stereolithographic printing
               write printability. J Appl Phys. 2023;134(10):100701.  with  in-situ  UV  curing  for  lighting  and  displays.  Compos
               doi: 10.1063/5.0155896                             Part B Eng. 2021;226:109350.
            103.  Aqeel AB, Mohasan M, Lv P, Yang Y, Duan H. Effects of the      doi: 10.1016/j.compositesb.2021.109350
               actuation waveform on the drop size reduction in drop-on-  113. Klein  M,  Steenhusen  S,  Löbmann  P.  Inorganic‑organic
               demand inkjet printing. Acta Mechan Sin. 2020;36(5):983-989.  hybrid polymers for printing of optical components: from
               doi: 10.1007/s10409-020-00991-y                    digital light processing to inkjet 3D-printing. J Sol-Gel Sci
                                                                  Technol. 2022;101:649-654.
            104. Jiang P, Yan C, Guo Y, et al. Direct ink writing with high-
               strength and swelling-resistant biocompatible physically      doi: 10.1007/s10971-022-05748-6
               crosslinked hydrogels. Biomater Sci. 2019;7(5):1805-1814.  114. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot
               doi: 10.1039/C9BM00081J                            light-emitting diodes. Nano Letters. 2014;14(12):7017-7023.
            105. Jaiswal A, Rani S, Singh G, et al. Additive manufacturing      doi: 10.1021/nl5033292
               of highly fluorescent organic 3D-metastructures at sub-  115. Faraji Rad Z, Prewett PD, Davies GJ. High‑resolution two‑
               wavelength resolution. Mater Today Phys. 2021;20:100434.  photon polymerization: the  most versatile  technique for
               doi: 10.1016/j.mtphys.2021.100434                  the fabrication of microneedle arrays.  Microsyst Nanoeng.
                                                                  2021;7(1):71.
            106. Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus
               3D two-photon polymerization with real-time calculated      doi: 10.1038/s41378-021-00298-3
               holograms. Opt Express. 2014;22(20):24217-24123.  116. Liu Z, Wang D, Gao H, Li M, Zhou H, Zhang C. Metasurface‑
               doi: 10.1364/OE.22.024217                          enabled augmented reality display: A review. Adv Photon.
                                                                  2023;5(3):034001.
            107. O’Halloran  S,  Pandit  A,  Heise  A,  Kellett  A.  Two‑photon
               polymerization: Fundamentals, materials, and chemical      doi: 10.1117/1.AP.5.3.034001
               modification strategies. Adv Sci. 2023;10(7):2204072.
                                                               117. Abdullah KA, Reed W. 3D printing in medical imaging and
               doi: 10.1002/advs.202204072                        healthcare services. J Med Radiat Sci. 2018;65(3):237-239.
            108. Jiao J, Zhou D, Li S, et al. Injection-seeded  high-repetition-rate      doi: 10.1002/jmrs.292












            Volume 3 Issue 4 (2024)                         25                             doi: 10.36922/msam.5748
   26   27   28   29   30   31   32   33   34   35   36