Page 31 - MSAM-3-4
P. 31
Materials Science in Additive Manufacturing Additive manufacturing of active optics
large objects with high resolution by dynamic projection short-pulse micro-laser based on upconversion nanoparticles.
scanning lithography. Micromachines. 2023;14(9):1700. Nanoscale. 2021;13(2):878-885.
doi: 10.3390/mi14091700 doi: 10.1039/D0NR06232D
99. Binyamin I, Grossman E, Gorodnitsky M, Kam D, 109. Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA.
Magdassi S. 3D printing thermally stable high-performance A novel microscale selective laser sintering (μ-SLS) process
polymers based on a dual curing mechanism. Adv Funct for the fabrication of microelectronic parts. Microsyst
Mater. 2023;33(24):2214368. Nanoeng. 2019;5(1):64.
doi: 10.1002/adfm.202214368 doi: 10.1038/s41378-019-0116-8
100. Huang J, Zhang B, Xiao J, Zhang Q. An approach to improve 110. Goetzendorfer B, Mohr T, Hellmann R. Hybrid approaches
the resolution of DLP 3D printing by parallel mechanism. for selective laser sintering by building on dissimilar
Appl Sci. 2022;12(24):12905. materials. Materials. 2020;13(22):5285.
doi: 10.3390/app122412905 doi: 10.3390/ma13225285
101. Dannenberg PH, Liapis AC, Martino N, Sarkar D, Kim KH, 111. Jeong HY, Lee E, An SC, Lim Y, Jun YC. 3D and 4D
Yun SH. Facile layer‑by‑layer fabrication of semiconductor printing for optics and metaphotonics. Nanophotonics.
microdisk laser particles. APL Photon. 2023;8(2):0213301. 2020;9(5):1139-1160.
doi: 10.1063/5.0130792 doi: 10.1515/nanoph-2019-0483
102. Wei P, Cipriani C, Hsieh CM, Kamani K, Rogers S, Pentzer E. 112. Jung NT, Chen PR, Ho SJ, Tung CC, Chen PY, Chen HS. 3D
Go with the flow: Rheological requirements for direct ink quantum dot-lens fabricated by stereolithographic printing
write printability. J Appl Phys. 2023;134(10):100701. with in-situ UV curing for lighting and displays. Compos
doi: 10.1063/5.0155896 Part B Eng. 2021;226:109350.
103. Aqeel AB, Mohasan M, Lv P, Yang Y, Duan H. Effects of the doi: 10.1016/j.compositesb.2021.109350
actuation waveform on the drop size reduction in drop-on- 113. Klein M, Steenhusen S, Löbmann P. Inorganic‑organic
demand inkjet printing. Acta Mechan Sin. 2020;36(5):983-989. hybrid polymers for printing of optical components: from
doi: 10.1007/s10409-020-00991-y digital light processing to inkjet 3D-printing. J Sol-Gel Sci
Technol. 2022;101:649-654.
104. Jiang P, Yan C, Guo Y, et al. Direct ink writing with high-
strength and swelling-resistant biocompatible physically doi: 10.1007/s10971-022-05748-6
crosslinked hydrogels. Biomater Sci. 2019;7(5):1805-1814. 114. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot
doi: 10.1039/C9BM00081J light-emitting diodes. Nano Letters. 2014;14(12):7017-7023.
105. Jaiswal A, Rani S, Singh G, et al. Additive manufacturing doi: 10.1021/nl5033292
of highly fluorescent organic 3D-metastructures at sub- 115. Faraji Rad Z, Prewett PD, Davies GJ. High‑resolution two‑
wavelength resolution. Mater Today Phys. 2021;20:100434. photon polymerization: the most versatile technique for
doi: 10.1016/j.mtphys.2021.100434 the fabrication of microneedle arrays. Microsyst Nanoeng.
2021;7(1):71.
106. Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus
3D two-photon polymerization with real-time calculated doi: 10.1038/s41378-021-00298-3
holograms. Opt Express. 2014;22(20):24217-24123. 116. Liu Z, Wang D, Gao H, Li M, Zhou H, Zhang C. Metasurface‑
doi: 10.1364/OE.22.024217 enabled augmented reality display: A review. Adv Photon.
2023;5(3):034001.
107. O’Halloran S, Pandit A, Heise A, Kellett A. Two‑photon
polymerization: Fundamentals, materials, and chemical doi: 10.1117/1.AP.5.3.034001
modification strategies. Adv Sci. 2023;10(7):2204072.
117. Abdullah KA, Reed W. 3D printing in medical imaging and
doi: 10.1002/advs.202204072 healthcare services. J Med Radiat Sci. 2018;65(3):237-239.
108. Jiao J, Zhou D, Li S, et al. Injection-seeded high-repetition-rate doi: 10.1002/jmrs.292
Volume 3 Issue 4 (2024) 25 doi: 10.36922/msam.5748

