Page 28 - MSAM-3-4
P. 28
Materials Science in Additive Manufacturing Additive manufacturing of active optics
nanocavities. Light Sci Appl. 2022;11(1):141. 44. Rocheva VV, Koroleva AV, Savelyev AG, et al. High‑
resolution 3D photopolymerization assisted by upconversion
doi: 10.1038/s41377-022-00832-6
nanoparticles for rapid prototyping applications. Sci
34. Wang M, Wang F, Chen J, et al. Active beam steering Rep. 2018;8(1):3663.
enabled by photonic-crystal surface-emitting laser. ACS
nano. 2024;18(29):18880-18888. doi: 10.1038/s41598-018-21793-0
45. Bae J, Lee S, Ahn J, et al. 3D-printed quantum dot nanopixels.
doi: 10.1021/acsnano.3c09793
ACS Nano. 2020;14(9):10993-1001.
35. Busschaert S, Flöry N, Papadopoulos S, Parzefall M, Heeg S, doi: 10.1021/acsnano.0c04075
Novotny L. Beam steering with a nonlinear optical phased
array antenna. Nano Lett. 2019;19(9):6097-6103. 46. Zhang G, Yu B, Cao Z, et al. A low loss quantum-dot-doped
optical fiber temperature sensor based on flexible print
doi: 10.1021/acs.nanolett.9b02029
technology. IEEE Photon J. 2020;12(3):1-8.
36. Chaudhari AK, Tan JC. Dual‐guest functionalized zeolitic doi: 10.1109/JPHOT.2020.2974905
imidazolate framework‐8 for 3D printing white light‐
emitting composites. Adv Opt Mater. 2020;8(8):1901912. 47. Ritacco T, Lio GE, Xu X, et al. Three-dimensional
photoluminescent crypto-images doped with (cdse)
doi: 10.1002/adom.201901912
zns quantum dots by one-photon and two-photon
37. Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. polymerization. ACS Appl Nano Mater. 2021;4(7):6916-6927.
Additive manufacturing of high-refractive-index, doi: 10.1021/acsanm.1c00968
nanoarchitected titanium dioxide for 3D dielectric photonic
crystals. Nano Lett. 2020;20(5):3513-3520. 48. Zhao J, Yan Y, Gao Z, et al. Full-color laser displays based
on organic printed microlaser arrays. Nat Commun.
doi: 10.1021/acs.nanolett.0c00454 2019;10(1):870.
38. Sergeev A, Pavlov D, Kuchmizhak A, et al. Tailoring doi: 10.1038/s41467-019-08834-6
spontaneous infrared emission of HgTe quantum dots with
laser-printed plasmonic arrays. Light Sci Appl. 2020;9(1):16. 49. Mata M, Sanz de León A, Valencia-Liñán LM, Molina SI.
Plasmonic characterization of 3D printable metal-polymer
doi: 10.1038/s41377-020-0247-6 nanocomposites. ACS Mater Au. 2024;4:424-435.
39. Boyer J, Johnson N, Van Veggel F. Upconverting lanthanide- doi: 10.1021/acsmaterialsau.4c00007
doped NaYF4‑ PMMA polymer composites prepared by in
situ polymerization. Chem Mater. 2009;21(10):2010-2012. 50. Yang J, Feng M, Zhang K, et al. All‐inorganic functional
phosphor-glass composites by light curing induced 3D
doi: 10.1021/cm900756h printing for next‐generation modular lighting devices. Adv
40. Zhang C, Zou CL, Zhao Y, et al. Organic printed photonics: Opt Mater. 2022;10(21):2201110.
From microring lasers to integrated circuits. Sci Adv. doi: 10.1002/adom.202201110
2015;1(8):e1500257.
51. Yang J, Feng M, Li Y, et al. Chromaticity-tunable all-
doi: 10.1126/sciadv.1500257 inorganic color converters fabricated by 3D printing for
41. Sergeeva KA, Pavlov DV, Seredin AA, et al. Laser‐printed modular plant growth lighting devices. ACS Appl Mater
plasmonic metasurface supporting bound states in the Interfaces. 2023;15(19):23527-23537.
continuum enhances and shapes infrared spontaneous doi: 10.1021/acsami.3c03881
emission of coupled HgTe quantum dots. Adv Funct Mater.
2023;33(44):2307660. 52. Xie M, Ji H, Wang D, et al. 3D printing of gradient-doped
Yb: YAG laser ceramics by leveraging active mixing. Addit
doi: 10.1002/adfm.202307660 Manuf Front. 2024;3(1):200118.
42. Mahata MK, Kumar K, Rai VK. Er3+–Yb3+ doped vanadate doi: 10.1016/j.amf.2024.200118
nanocrystals: A highly sensitive thermographic phosphor
and its optical nanoheater behavior. Sensors Actuat B Chem. 53. Zhou Y, Cheng C, Hu L, Chen F. Guided‑wave up‑conversion
2015;209:775-780. luminescence in Er3+/Yb3+ Co-doped phosphate glass
waveguide produced by direct femtosecond laser writing.
doi: 10.1016/j.snb.2014.12.039 Front Phys. 2022;9:763377.
43. Zhang Q, Boniface A, Parashar VK, Gijs MA, Moser C. Multi‑ doi: 10.3389/fphy.2021.763377
photon polymerization using upconversion nanoparticles
for tunable feature-size printing. Nanophotonics. 54. Moon BS, Lee TK, Jeon WC, Kwak SK, Kim YJ, Kim DH.
Continuous-wave upconversion lasing with a sub-10 W cm
-2
2023;12(8):1527-1536.
threshold enabled by atomic disorder in the host matrix. Nat
doi: 10.1515/nanoph-2022-0598 Commun. 2021;12(1):4437.
Volume 3 Issue 4 (2024) 22 doi: 10.36922/msam.5748

