Page 86 - MSAM-3-4
P. 86

Materials Science in Additive Manufacturing                          Impact resistance and porous structures



               of Process Parameters for SLM Processing of AlSi7Mg      doi: 10.1016/j.compositesb.2022.110351
               Aluminum Alloy. Current Methods of Construction Design:   27.  Peng C, Tran P. Bioinspired functionally graded gyroid
               Proceedings of the ICMD 2018. Germany: Springer; 2020.   sandwich panel subjected to impulsive loadings.  Compos
               p. 515-524.
                                                                  Part B Eng. 2020;188:107773.
               doi: 10.1007/978-3-030-33146-7_59                  doi: 10.1016/j.compositesb.2020.107773
            17.  Kimura T, Nakamoto T. Microstructures and mechanical   28.  Xing Y, Yang J. Stiffness distribution in natural insect
               properties of A356 (AlSi7Mg0. 3) aluminum alloy fabricated   cuticle  reveals  an  impact  resistance  strategy.  J  Biomech.
               by selective laser melting. Mater Design. 2016;89:1294-1301.  2020;109:109952.
               doi: 10.1016/j.matdes.2015.10.065                  doi: 10.1016/j.jbiomech.2020.109952
            18.  Nasab MH, Romano S, Gastaldi D, Beretta S, Vedani M.   29.  Zhao M, Zhang DZ, Liu F, Li Z, Ma Z, Ren Z. Mechanical
               Combined effect of surface anomalies and volumetric   and  energy  absorption  characteristics  of  additively
               defects on fatigue assessment of AlSi7Mg fabricated via laser   manufactured functionally graded sheet lattice structures
               powder bed fusion. Addit Manufact. 2020;34:100918.  with minimal surfaces. Int J Mech Sci. 2020;167:105262.
               doi: 10.1016/j.addma.2019.100918                   doi: 10.1016/j.ijmecsci.2019.105262
            19.  Marola S, Peverini OA, Lumia M, Addamo G,     30.  Yu S, Sun J, Bai J. Investigation of functionally graded TPMS
               Calignano  F, Manfredi D. Effect of thermal treatments on   structures fabricated by additive manufacturing.  Mater
               the surface electrical conductivity of AlSi7Mg produced   Design. 2019;182:108021.
               by  laser  powder  bed  fusion.  Mater Today Commun.
               2024;710:109339.                                   doi: 10.1016/j.matdes.2019.108021
               doi: 10.1016/j.mtcomm.2024.109339               31.  Zhang T, Zhang K, Liu F, et al. Analysis of thermal storage
                                                                  behavior of composite phase change materials embedded
            20.  Fan H, Witvrouw A, Wolf-Monheim F, Souschek R,   with gradient-designed TPMS  thermal conductivity
               Yang S. Effects of substrate surface treatments on hybrid   enhancers: A  numerical and experimental study.  Appl
               manufacturing of AlSi7Mg using die casting and selective   Energy. 2024;358:122630.
               laser melting. J Mater Sci Technol. 2023;156:142-156.
                                                                  doi: 10.1016/j.apenergy.2024.122630
               doi: 10.1016/j.jmst.2023.02.009
                                                               32.  Li Y, Liu B, Li Z, et al. Design and Compression Behavior
            21.  Zhang Z, Li J, Cheng T,  et al. Simultaneously enhanced   Exploration of Skeletal and Sheet Triply Periodic Minimal
               strength and ductility of AlSi7Mg alloy fabricated by laser   Surface Structures. Adv Eng Mater. 2024;26(3):2301589.
               powder bed fusion with on-line static magnetic field. Virtual
               Phys Prototyp. 2023;18:e2161918.                   doi: 10.1002/adem.202301589
               doi: 10.1080/17452759.2022.2161918              33.  Wallat L, Altschuh P, Reder M, Nestler B, Poehler F.
                                                                  Computational design and characterisation of gyroid
            22.  Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical   structures with different gradient functions for porosity
               metamaterials based on triply periodic minimal surface   adjustment. Materials (Basel). 2022;15(10):3730.
               lattices. Adv Eng Mater. 2019;21(10):1900524.
                                                                  doi: 10.3390/ma15103730
               doi: 10.1002/adem.201900524
                                                               34.  Zhang J, Xie S, Li T,  et al. A  study of multi-stage energy
            23.  Yang N, Du CF, Wang S, Yang Y, Zhang C. Mathematically   absorption characteristics of hybrid sheet TPMS lattices.
               defined gradient porous materials. Mater Lett. 2016;173:136-140.  Thin Walled Struct. 2023;190:110989.
               doi: 10.1016/j.matlet.2016.03.021                  doi: 10.1016/j.tws.2023.110989
            24.  Zhang Y, Zhang  J, Zhao  X,  et al. Mechanical  behaviors   35.  Han L, Shunai C.  An overview of materials with triply
               regulation of triply periodic minimal surface structures with   periodic minimal surfaces and related geometry: From
               crystal twinning. Addit Manuf. 2022;58:103036.     biological structures to self‐assembled systems. Adv Mater.
               doi: 10.1016/j.addma.2022.103036                   2018;30:1705708.
            25.  Wang H, Tan D, Liu Z, Yin H, Wen G. On crashworthiness      doi: 10.1002/adma.201705708
               of novel porous structure based on composite TPMS   36.  Zhang L, Feih S, Daynes S,  et  al. Energy absorption
               structures. Eng Struct. 2022;252:113640.           characteristics of metallic triply periodic minimal surface
                                                                  sheet structures under compressive loading. Addit Manufact.
               doi: 10.1016/j.engstruct.2021.113640
                                                                  2018;23:505-515.
            26.  Guo X, Ding J, Li X, et al. Interpenetrating phase composites
               with 3D printed triply periodic minimal surface (TPMS)      doi: 10.1016/j.addma.2018.08.007
               lattice structures. Compos Part B: Eng. 2023;248:110351.  37.  Yang E, Leary M, Lozanovski B, et al. Effect of geometry on


            Volume 3 Issue 4 (2024)                         14                             doi: 10.36922/msam.5729
   81   82   83   84   85   86   87   88   89   90   91