Page 114 - MSAM-4-1
P. 114

Materials Science in Additive Manufacturing                  Topology optimization of an aluminum bicycle pedal
                                                                                    crank using laser powder bed fusion


               Available from: https://bike.shimano.com/technologies/  Methods. Switzerland: ISO; 2019. p. 21.
               details/hollowtech-2.html [Last accessed on 2024 Jul 10].
                                                               45.  Khan HM,  Karabulut Y,  Kitay O, Kaynak Y,  Jawahir IS.
            36.  ISO.  ISO/IEC/IEEE  14764:2022-Software  Engineering-  Influence of the post-processing operations on surface
               Software Life Cycle Processes-Maintenance. Switzerland: ISO;   integrity of metal components produced by laser powder
               2022. p. 36.                                       bed fusion additive manufacturing: A review. Machining Sci
            37.  Sandvik.  Osprey  AlSi10Mg  Powder  for Additive   Technol. 2021;25:118-176.
                             ®
               Manufacturing  -  DATASHEET. Available from: https://     doi: 10.1080/10910344.2020.1855649
               www.metalpowder.sandvik/en/syssiteassets/metal-powder/
               datasheets/osprey-alsi10mg-and-alsi7mg.pdf [Last accessed   46.  Mehta B, Hryha E, Nyborg L, Tholence F, Johansson E. Effect
               on 2024 Oct 19].                                   of surface sandblasting and turning on compressive strength
                                                                  of thin 316L stainless steel shells produced by laser powder
            38.  Li P, Kim Y, Bobel AC, et al. Microstructural origin of the   bed fusion. Metals Basel. 2021;11:1070.
               anisotropic flow stress of laser powder bed fused AlSi10Mg.
               Acta Mater. 2021;220:117346.                       doi: 10.3390/met11071070
               doi: 10.1016/j.actamat.2021.117346              47.  Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC.
                                                                  Effect of selective laser melting process parameters on the
            39.  Zhou L, Mehta A, Schulz E, McWilliams B, Cho K, Sohn  Y.   quality of al alloy parts: Powder characterization, density,
               Microstructure, precipitates and hardness of selectively laser   surface roughness, and dimensional accuracy.  Materials.
               melted AlSi10Mg alloy before and after heat treatment.   2018;11:2343.
               Mater Charact. 2018;143:5-17.
                                                                  doi: 10.3390/ma11122343
               doi: 10.1016/j.matchar.2018.04.022
                                                               48.  Sagbas B. Post-processing effects on surface properties of
            40.  Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C,
               Hague R. 3D printing of aluminium alloys: Additive   direct metal laser sintered AlSi10Mg parts. Metals Mater Int.
               manufacturing of aluminium alloys using selective laser   2020;26:143-153.
               melting. Progress Mater Sci. 2019;106:100578.      doi: 10.1007/s12540-019-00375-3
               doi: 10.1016/j.pmatsci.2019.100578              49.  Chu F, Zhang K, Shen H,  et al. Influence of satellite and
            41.  Mower TM, Long MJ. Mechanical behavior of additive   agglomeration of powder on the processability of AlSi10Mg
               manufactured, powder-bed laser-fused materials. Mater Sci   powder in Laser Powder Bed Fusion. J Mater Res Technol.
               Eng A. 2016;651:198-213.                           2021;11:2059-2073.
               doi: 10.1016/j.msea.2015.10.068                    doi: 10.1016/j.jmrt.2021.02.015
            42.  Li BQ, Li Z, Bai P, Liu B, Kuai Z. Research on surface   50.  Al  Njjar  A,  Mazloum  K,  Sata  A.  Optimization  of  powder
               roughness of AlSi10Mg parts fabricated by laser powder bed   metallurgy parameters for improving the major properties
               fusion. Metals Basel. 2018;8:524.                  of AA7075/SiC composites for aerospace applications.
                                                                  J Mater Eng Perform. 2024.
               doi: 10.3390/met8070524
                                                                  doi: 10.1007/s11665-024-09998-z
            43.  ISO_4287. Geometrical Product Specifications (GPS)-Surface
               Texture: Profile Method-Terms, Definitions and Surface   51.  Zhang P, Li X, Dong S,  et al. Superhigh yield ratio and
               Texture Parameters. Switzerland: ISO; 1997.        considerable plasticity in powder metallurgy Al-Zn-Mg-Cu
                                                                  alloy prepared with elemental powder. JOM. 2024; 77:1241-
            44.  ISO/ASTM.  ISO 25178-600:2019-Geometrical Product
               Specifications  (GPS)-Surface  Texture:  Areal-Part  600:   1251.
               Metrological Characteristics for Areal Topography Measuring      doi: 10.1007/s11837-024-07018-y




















            Volume 4 Issue 1 (2025)                         15                        doi: 10.36922/MSAM025040003
   109   110   111   112   113   114   115   116