Page 114 - MSAM-4-1
P. 114
Materials Science in Additive Manufacturing Topology optimization of an aluminum bicycle pedal
crank using laser powder bed fusion
Available from: https://bike.shimano.com/technologies/ Methods. Switzerland: ISO; 2019. p. 21.
details/hollowtech-2.html [Last accessed on 2024 Jul 10].
45. Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir IS.
36. ISO. ISO/IEC/IEEE 14764:2022-Software Engineering- Influence of the post-processing operations on surface
Software Life Cycle Processes-Maintenance. Switzerland: ISO; integrity of metal components produced by laser powder
2022. p. 36. bed fusion additive manufacturing: A review. Machining Sci
37. Sandvik. Osprey AlSi10Mg Powder for Additive Technol. 2021;25:118-176.
®
Manufacturing - DATASHEET. Available from: https:// doi: 10.1080/10910344.2020.1855649
www.metalpowder.sandvik/en/syssiteassets/metal-powder/
datasheets/osprey-alsi10mg-and-alsi7mg.pdf [Last accessed 46. Mehta B, Hryha E, Nyborg L, Tholence F, Johansson E. Effect
on 2024 Oct 19]. of surface sandblasting and turning on compressive strength
of thin 316L stainless steel shells produced by laser powder
38. Li P, Kim Y, Bobel AC, et al. Microstructural origin of the bed fusion. Metals Basel. 2021;11:1070.
anisotropic flow stress of laser powder bed fused AlSi10Mg.
Acta Mater. 2021;220:117346. doi: 10.3390/met11071070
doi: 10.1016/j.actamat.2021.117346 47. Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC.
Effect of selective laser melting process parameters on the
39. Zhou L, Mehta A, Schulz E, McWilliams B, Cho K, Sohn Y. quality of al alloy parts: Powder characterization, density,
Microstructure, precipitates and hardness of selectively laser surface roughness, and dimensional accuracy. Materials.
melted AlSi10Mg alloy before and after heat treatment. 2018;11:2343.
Mater Charact. 2018;143:5-17.
doi: 10.3390/ma11122343
doi: 10.1016/j.matchar.2018.04.022
48. Sagbas B. Post-processing effects on surface properties of
40. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C,
Hague R. 3D printing of aluminium alloys: Additive direct metal laser sintered AlSi10Mg parts. Metals Mater Int.
manufacturing of aluminium alloys using selective laser 2020;26:143-153.
melting. Progress Mater Sci. 2019;106:100578. doi: 10.1007/s12540-019-00375-3
doi: 10.1016/j.pmatsci.2019.100578 49. Chu F, Zhang K, Shen H, et al. Influence of satellite and
41. Mower TM, Long MJ. Mechanical behavior of additive agglomeration of powder on the processability of AlSi10Mg
manufactured, powder-bed laser-fused materials. Mater Sci powder in Laser Powder Bed Fusion. J Mater Res Technol.
Eng A. 2016;651:198-213. 2021;11:2059-2073.
doi: 10.1016/j.msea.2015.10.068 doi: 10.1016/j.jmrt.2021.02.015
42. Li BQ, Li Z, Bai P, Liu B, Kuai Z. Research on surface 50. Al Njjar A, Mazloum K, Sata A. Optimization of powder
roughness of AlSi10Mg parts fabricated by laser powder bed metallurgy parameters for improving the major properties
fusion. Metals Basel. 2018;8:524. of AA7075/SiC composites for aerospace applications.
J Mater Eng Perform. 2024.
doi: 10.3390/met8070524
doi: 10.1007/s11665-024-09998-z
43. ISO_4287. Geometrical Product Specifications (GPS)-Surface
Texture: Profile Method-Terms, Definitions and Surface 51. Zhang P, Li X, Dong S, et al. Superhigh yield ratio and
Texture Parameters. Switzerland: ISO; 1997. considerable plasticity in powder metallurgy Al-Zn-Mg-Cu
alloy prepared with elemental powder. JOM. 2024; 77:1241-
44. ISO/ASTM. ISO 25178-600:2019-Geometrical Product
Specifications (GPS)-Surface Texture: Areal-Part 600: 1251.
Metrological Characteristics for Areal Topography Measuring doi: 10.1007/s11837-024-07018-y
Volume 4 Issue 1 (2025) 15 doi: 10.36922/MSAM025040003

