Page 77 - MSAM-4-1
P. 77

Materials Science in Additive Manufacturing                 In situ electromagnetic field manipulation during LMD



               doi: 10.1016/S0017-9310(00)00299-4                 Transfer. 2018;124:504-516.
            20.  Kelly SM, Kampe SL. Microstructural evolution in laser-     doi: 10.1016/j.ijheatmasstransfer.2018.03.085
               deposited multilayer Ti-6Al-4V builds: Part  II. Thermal   31.  Saldi  ZS.  Marangoni Driven Free Surface Flows in
               modeling. Metall Mater Transact A. 2004;35(6):1869-1879.
                                                                  Liquid Weld Pools. The Netherlands: Delft University of
               doi: 10.1007/s11661-004-0094-8                     Technology; 2012. Available from: https://resolver.tudelft.
            21.  Wirth F, Wegener K. A  physical modeling and predictive   nl/uuid:8401374b-9e9c-4d25-86b7-fc445ec73d27
               simulation of the laser cladding process.  Addit Manuf.   32.  Spiegel EA, Veronis G. On the boussinesq approximation for
               2018;22:307-319.                                   a compressible fluid. Astrophys J. 1960;131:442.
               doi: 10.1016/j.addma.2018.05.017                   doi: 10.1086/146849
            22.  Hirt CW, Nichols BD. Volume of fluid (VOF) method for the   33.  Boivineau M, Cagran C, Doytier D, et al. Thermophysical
               dynamics of free boundaries. J Comput Phys. 1981;39(1):201-225.  properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J
               doi: 10.1016/0021-9991(81)90145-5                  Thermophys. 2006;27(2):507-529.
            23.  Pinkerton AJ. Advances in the modeling of laser direct metal      doi: 10.1007/PL00021868
               deposition. J Laser Appl. 2014;27(S1):S15001.   34.  Hagqvist P, Sikström F, Christiansson AK. Emissivity
               doi: 10.2351/1.4815992                             estimation for high temperature radiation pyrometry on
                                                                  Ti-6Al-4V. Measurement. 2013;46(2):871-880.
            24.  Sun Z, Guo W, Li L. Numerical modelling of heat transfer,
               mass transport and microstructure formation in a high      doi: 10.1016/j.measurement.2012.10.019
               deposition rate laser directed energy deposition process.   35.  Soylemez E, Beuth J, Taminger K. Controlling Melt Pool
               Addit Manuf. 2020;33:101175.                       Dimensions Over a Wide Range of Material Deposition
               doi: 10.1016/j.addma.2020.101175                   Rates in Electron Beam Additive Manufacturing. In:
                                                                  International Solid Freeform Fabrication Symposium; 2010.
            25.  Wei S, Wang G, Shin YC, Rong Y. Comprehensive modeling
               of transport phenomena in laser hot-wire deposition      doi: 10.26153/tsw/15221
               process. Int J Heat Mass Transfer. 2018;125:1356-1368.  36.  Tang Q, Pang S, Chen B, Suo H, Zhou J. A three dimensional
               doi: 10.1016/j.ijheatmasstransfer.2018.04.164      transient model for heat transfer and fluid flow of weld pool
                                                                  during electron beam freeform fabrication of Ti-6-Al-4-V
            26.  Morville S, Carin M, Peyre P, et al. 2D longitudinal modeling   alloy. Int J Heat Mass Transfer. 2014;78:203-215.
               of heat transfer and fluid flow during multilayered direct
               laser metal deposition process. J Laser Appl. 2012;24:032008.     doi: 10.1016/j.ijheatmasstransfer.2014.06.048
               doi: 10.2351/1.4726445                          37.  Liu C, Xie L, Qian D, et al. Microstructure evolution and
                                                                  mechanical property response of TC11 titanium alloy under
            27.  Gan Z, Liu H, Li S, He X, Yu G. Modeling of thermal   electroshock treatment. Mater Design. 2021;198:109322.
               behavior and mass transport in multi-layer laser additive
               manufacturing of Ni-based alloy on cast iron.  Int J Heat      doi: 10.1016/j.matdes.2020.109322
               Mass Transfer. 2017;111:709-722.                38.  Wen Y, Sun X, Zhou J, et al. Influence of electroshocking
               doi: 10.1016/j.ijheatmasstransfer.2017.04.055      treatment  on  microstructure  and  mechanical  properties
                                                                  of  Ti-6.5  Al-3.5  Mo-1.5  Zr-0.3  si  thin-wall  specimen
            28.  Gan Z, Yu G, He X, Li S. Surface-active element transport   manufactured by laser melting deposition. Acta Metall Sin
               and its effect on liquid metal flow in laser-assisted   (Engl Lett). 2024;37(1):145-158.
               additive manufacturing. Int Commun Heat Mass Transfer.
               2017;86:206-214.                                   doi: 10.1007/s40195-023-01592-x
               doi: 10.1016/j.icheatmasstransfer.2017.06.007   39.  Liu C, Yin F, Xie L,  et al. Evolution of grain boundary
                                                                  and texture in TC11 titanium alloy under electroshock
            29.  Arrizubieta JI, Lamikiz A, Klocke F, Martínez S, Arntz K,
               Ukar E. Evaluation of the relevance of melt pool dynamics in   treatment. J Alloys Compounds. 2022;904:163969.
               laser material deposition process modeling. Int J Heat Mass      doi: 10.1016/j.jallcom.2022.163969
               Transfer. 2017;115:80-91.
                                                               40.  Zhou J, Liu C, Wu Y, et al. Evolution mechanism of grain
               doi: 10.1016/j.ijheatmasstransfer.2017.07.011      orientation and texture distribution of Ti-6.5 Al-3.5 Mo-1.5
                                                                  Zr-0.3 Si alloy under electroshocking treatment. J Mater Res
            30.  Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat
               transfer and fluid flow in multilayer deposition of PAW-  Technol. 2023;25:5693-5704.
               based wire and arc additive manufacturing. Int J Heat Mass      doi: 10.1016/j.jmrt.2023.07.028





            Volume 4 Issue 1 (2025)                         18                             doi: 10.36922/msam.8332
   72   73   74   75   76   77   78   79   80   81   82