Page 77 - MSAM-4-1
P. 77
Materials Science in Additive Manufacturing In situ electromagnetic field manipulation during LMD
doi: 10.1016/S0017-9310(00)00299-4 Transfer. 2018;124:504-516.
20. Kelly SM, Kampe SL. Microstructural evolution in laser- doi: 10.1016/j.ijheatmasstransfer.2018.03.085
deposited multilayer Ti-6Al-4V builds: Part II. Thermal 31. Saldi ZS. Marangoni Driven Free Surface Flows in
modeling. Metall Mater Transact A. 2004;35(6):1869-1879.
Liquid Weld Pools. The Netherlands: Delft University of
doi: 10.1007/s11661-004-0094-8 Technology; 2012. Available from: https://resolver.tudelft.
21. Wirth F, Wegener K. A physical modeling and predictive nl/uuid:8401374b-9e9c-4d25-86b7-fc445ec73d27
simulation of the laser cladding process. Addit Manuf. 32. Spiegel EA, Veronis G. On the boussinesq approximation for
2018;22:307-319. a compressible fluid. Astrophys J. 1960;131:442.
doi: 10.1016/j.addma.2018.05.017 doi: 10.1086/146849
22. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the 33. Boivineau M, Cagran C, Doytier D, et al. Thermophysical
dynamics of free boundaries. J Comput Phys. 1981;39(1):201-225. properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J
doi: 10.1016/0021-9991(81)90145-5 Thermophys. 2006;27(2):507-529.
23. Pinkerton AJ. Advances in the modeling of laser direct metal doi: 10.1007/PL00021868
deposition. J Laser Appl. 2014;27(S1):S15001. 34. Hagqvist P, Sikström F, Christiansson AK. Emissivity
doi: 10.2351/1.4815992 estimation for high temperature radiation pyrometry on
Ti-6Al-4V. Measurement. 2013;46(2):871-880.
24. Sun Z, Guo W, Li L. Numerical modelling of heat transfer,
mass transport and microstructure formation in a high doi: 10.1016/j.measurement.2012.10.019
deposition rate laser directed energy deposition process. 35. Soylemez E, Beuth J, Taminger K. Controlling Melt Pool
Addit Manuf. 2020;33:101175. Dimensions Over a Wide Range of Material Deposition
doi: 10.1016/j.addma.2020.101175 Rates in Electron Beam Additive Manufacturing. In:
International Solid Freeform Fabrication Symposium; 2010.
25. Wei S, Wang G, Shin YC, Rong Y. Comprehensive modeling
of transport phenomena in laser hot-wire deposition doi: 10.26153/tsw/15221
process. Int J Heat Mass Transfer. 2018;125:1356-1368. 36. Tang Q, Pang S, Chen B, Suo H, Zhou J. A three dimensional
doi: 10.1016/j.ijheatmasstransfer.2018.04.164 transient model for heat transfer and fluid flow of weld pool
during electron beam freeform fabrication of Ti-6-Al-4-V
26. Morville S, Carin M, Peyre P, et al. 2D longitudinal modeling alloy. Int J Heat Mass Transfer. 2014;78:203-215.
of heat transfer and fluid flow during multilayered direct
laser metal deposition process. J Laser Appl. 2012;24:032008. doi: 10.1016/j.ijheatmasstransfer.2014.06.048
doi: 10.2351/1.4726445 37. Liu C, Xie L, Qian D, et al. Microstructure evolution and
mechanical property response of TC11 titanium alloy under
27. Gan Z, Liu H, Li S, He X, Yu G. Modeling of thermal electroshock treatment. Mater Design. 2021;198:109322.
behavior and mass transport in multi-layer laser additive
manufacturing of Ni-based alloy on cast iron. Int J Heat doi: 10.1016/j.matdes.2020.109322
Mass Transfer. 2017;111:709-722. 38. Wen Y, Sun X, Zhou J, et al. Influence of electroshocking
doi: 10.1016/j.ijheatmasstransfer.2017.04.055 treatment on microstructure and mechanical properties
of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 si thin-wall specimen
28. Gan Z, Yu G, He X, Li S. Surface-active element transport manufactured by laser melting deposition. Acta Metall Sin
and its effect on liquid metal flow in laser-assisted (Engl Lett). 2024;37(1):145-158.
additive manufacturing. Int Commun Heat Mass Transfer.
2017;86:206-214. doi: 10.1007/s40195-023-01592-x
doi: 10.1016/j.icheatmasstransfer.2017.06.007 39. Liu C, Yin F, Xie L, et al. Evolution of grain boundary
and texture in TC11 titanium alloy under electroshock
29. Arrizubieta JI, Lamikiz A, Klocke F, Martínez S, Arntz K,
Ukar E. Evaluation of the relevance of melt pool dynamics in treatment. J Alloys Compounds. 2022;904:163969.
laser material deposition process modeling. Int J Heat Mass doi: 10.1016/j.jallcom.2022.163969
Transfer. 2017;115:80-91.
40. Zhou J, Liu C, Wu Y, et al. Evolution mechanism of grain
doi: 10.1016/j.ijheatmasstransfer.2017.07.011 orientation and texture distribution of Ti-6.5 Al-3.5 Mo-1.5
Zr-0.3 Si alloy under electroshocking treatment. J Mater Res
30. Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat
transfer and fluid flow in multilayer deposition of PAW- Technol. 2023;25:5693-5704.
based wire and arc additive manufacturing. Int J Heat Mass doi: 10.1016/j.jmrt.2023.07.028
Volume 4 Issue 1 (2025) 18 doi: 10.36922/msam.8332

