Page 76 - MSAM-4-1
P. 76

Materials Science in Additive Manufacturing                 In situ electromagnetic field manipulation during LMD


            Availability of data                               10.  Zhou X, Xu D, Geng S,  et al. Mechanical properties,
                                                                  corrosion behavior and cytotoxicity of Ti-6Al-4V alloy
            The data that support the findings of this study are   fabricated by laser metal deposition. Mater Characterization.
            presented in the paper. They are also available from the   2021;179:111302.
            corresponding authors upon reasonable request.
                                                                  doi: 10.1016/j.matchar.2021.111302
            References                                         11.  Dinda GP, Dasgupta AK, Mazumder J. Laser aided direct

            1.   Tan C, Li R, Su J, et al. Review on field assisted metal additive   metal deposition of Inconel 625 superalloy: Microstructural
               manufacturing. Int J Mach Tools Manuf. 2023;189:104032.  evolution and thermal stability.  Mater Sci Eng A.
                                                                  2009;509(1):98-104.
               doi: 10.1016/j.ijmachtools.2023.104032
                                                                  doi: 10.1016/j.msea.2009.01.009
            2.   Zhang M, Wang B, Li X, Jiao G, Fang X, Huang H. Grain
               refinement of NiTi alloys during ultrasound-assisted   12.  Rao J, Leong Sing S, Liu P, Wang J, Sohn H. Non-
               wire-arc directed energy deposition.  Virtual Phys   destructive  testing  of  metal-based  additively
               Prototyp. 2024;19(1):e2289465.                     manufactured parts and processes: A review. Virtual Phys
                                                                  Prototyp. 2023;18(1):e2266658.
               doi: 10.1080/17452759.2023.2289465
                                                                  doi: 10.1080/17452759.2023.2266658
            3.   Santos EC, Shiomi M, Osakada K, Laoui T. Rapid
               manufacturing of metal components by laser forming. Int J   13.  Chen C, Sun H, Zhang Z, Zhao Y, Liu Y, Chen H.
               Mach Tools Manuf. 2006;46(12):1459-1468.           Grain structure control of TC11 alloy in laser direct
                                                                  energy deposition by a static magnetic field.  Materialia.
               doi: 10.1016/j.ijmachtools.2005.09.005
                                                                  2024;38:102267.
            4.   Thompson SM, Bian L, Shamsaei N, Yadollahi A. An overview      doi: 10.1016/j.mtla.2024.102267
               of direct laser deposition for additive manufacturing; Part I:
               Transport phenomena, modeling and diagnostics.  Addit   14.  Chen C, Zhang K, Zhao R, et al. Laser powder bed fusion
               Manuf. 2015;8:36-62.                               of GH4099 Ni-based superalloy under a static magnetic
                                                                  field with tailored microstructure and enhanced mechanical
               doi: 10.1016/j.addma.2015.07.001
                                                                  performance. Virtual Phys Prototyp. 2024;19(1):e2411023.
            5.   Wang G, Zhao H, Liang H, Deng C, Ma W. Multi-
               objective optimisation of process parameters for laser-     doi: 10.1080/17452759.2024.2411023
               based directed energy deposition of a mixture of H13 and   15.  Qin Y, Liao Y, Li G, Cui J, Jiang H. Numerical simulation and
               M2  steel  powders  on  4Cr5Mo2SiV1  steel.  Virtual Phys   parameter analysis of electromagnetic riveting process for
               Prototyp. 2024;19(1):e2290184.                     Ti-6Al-4V titanium rivet. Coatings. 2021;11(8):878.
               doi: 10.1080/17452759.2023.2290184                 doi: 10.3390/coatings11080878
            6.   Su J, Li Q, Teng J, et al. Programmable mechanical properties   16.  Li Y, Xu W, Su Q, Wang Q. Microstructure and properties
               of additively manufactured novel steel. Int J Extrem Manuf.   of Ti-Al coating on titanium alloy surface assisted by
               2024;7(1):015001.                                  electromagnetic field. ACS Omega. 2024;9(46):46176-46191.
               doi: 10.1088/2631-7990/ad88bc                      doi: 10.1021/acsomega.4c06757
            7.   Haley J, Karandikar J, Herberger C, MacDonald E,   17.  Song X, Qi H, Li S, Hu Y, Yang W, Li Z. Effect of cryogenic
               Feldhausen T, Lee Y. Review of in situ process monitoring for   coupled magnetic field treatment on the microstructure and
               metal hybrid directed energy deposition. J Manuf Processes.   mechanical properties on Ti-6Al-4V titanium alloy. Mater
               2024;109:128-139.                                  Today Commun. 2024;40:109417.
               doi: 10.1016/j.jmapro.2023.12.004                  doi: 10.1016/j.mtcomm.2024.109417
            8.   Azarniya A, Colera XG, Mirzaali MJ,  et al. Additive   18.  Bachmann M, Avilov V, Gumenyuk A, Rethmeier M.
               manufacturing of Ti-6Al-4V parts through laser metal   Numerical assessment and experimental verification of
               deposition (LMD): Process, microstructure, and mechanical   the influence of the Hartmann effect in laser beam welding
               properties. J Alloys Compounds. 2019;804:163-191.  processes by steady magnetic fields.  Int J Therm Sci.
               doi: 10.1016/j.jallcom.2019.04.255                 2016;101:24-34.
            9.   Choi YR, Sun SD, Liu Q, Brandt M, Qian M. Influence      doi: 10.1016/j.ijthermalsci.2015.10.030
               of deposition strategy on the microstructure and fatigue   19.  Velde O, Gritzki R, Grundmann R. Numerical investigations
               properties  of  laser  metal  deposited  Ti-6Al-4V  powder  on   of Lorentz force influenced Marangoni convection relevant
               Ti-6Al-4V substrate. Int J Fatigue. 2020;130:105236.  to aluminum surface alloying.  Int J  Heat Mass Transfer.
               doi: 10.1016/j.ijfatigue.2019.105236               2001;44(14):2751-2762.


            Volume 4 Issue 1 (2025)                         17                             doi: 10.36922/msam.8332
   71   72   73   74   75   76   77   78   79   80   81