Page 87 - MSAM-4-1
P. 87

Materials Science in Additive Manufacturing                        SLM of ODS steel: Process and properties



               2009;11(7):541-546.                             16.  Li XP, Kang CW, Huang H, Sercombe TB. The role of
                                                                  a low-energy-density re-scan in fabricating crack-free
               doi: 10.1002/adem.200800407
                                                                  Al8 Ni Y6Co Fe  bulk metallic glass composites via selective
                                                                              2
                                                                     5
                                                                       5
                                                                            2
            6.   Wilms MB, Rittinghaus SK, Goßling M, Gökce B. Additive   laser melting. Mater Des. 2014;63:407-411.
               manufacturing of oxide-dispersion strengthened alloys:
               Materials, synthesis and manufacturing.  Prog  Mater  Sci.      doi: 10.1016/j.matdes.2014.06.022
               2023;133:101049.                                17.  Vasquez E, Giroux PF, Lomello F, et al. Elaboration of oxide
                                                                  dispersion strengthened Fe-14Cr stainless steel by selective
               doi: 10.1016/j.pmatsci.2022.101049
                                                                  laser melting. J Mater Process Technol. 2019;267:403-413.
            7.   Suryanarayana C. Mechanical alloying and milling.  Prog
               Mater Sci. 2001;46(1-2):1-184.                     doi: 10.1016/j.jmatprotec.2018.12.034
                                                               18.  Sagaradze VV, Kozlov KA, Kataeva NV. Oxide-dispersion
               doi: 10.1016/S0079-6425(99)00010-9
                                                                  strengthened radiation-resistant steels. Phys Met Metallogr.
            8.   Ou Lahcen EM, Ángel Alcázar MM, Almeida CP. New   2018;119(13):1350-1353.
               high strength ODS Eurofer steel processed by mechanical
               alloying. Mater Sci Eng A. 2021;817:141288.        doi: 10.1134/S0031918X18130112
                                                               19.  Tanno  T, Ohtsuka S, Yano  Y, Kaito T,  Tanaka K. Effects of
               doi: 10.1016/j.msea.2021.141288
                                                                  manufacturing process on impact properties and microstructures
            9.   Noh S, Choi BK, Kang SH, Kim TK. Influence of mechanical   of ODS steels. J Nucl Mater. 2014;455(1):480-485.
               alloying atmospheres on the microstructures and
               mechanical properties of 15Cr ODS steels. Nucl Eng Technol.      doi: 10.1016/j.jnucmat.2014.07.075
               2014;46(6):857-862.                             20.  Gil E, Ordás N, García-Rosales C, Iturriza I. Microstructural
                                                                  characterization of ODS ferritic steels at different processing
               doi: 10.5516/NET.07.2013.096
                                                                  stages. Fus Eng Des. 2015;98-99:1973-1977.
            10.  Verma L, Dabhade VV. Synthesis of Fe-15Cr-2W oxide
               dispersion strengthened (ODS) steel powders by mechanical      doi: 10.1016/j.fusengdes.2015.06.010
               alloying. Powder Technol. 2023;425:118554.      21.  Hsiung LL, Fluss MJ, Kimura A. Structure of oxide
                                                                  nanoparticles in Fe-16Cr MA/ODS ferritic steel. Mater Lett.
               doi: 10.1016/j.powtec.2023.118554
                                                                  2010;64(16):1782-1785.
            11.  Oksiuta  Z,  Ozieblo  A,  Perkowski  K,  Osuchowski  M,
               Lewandowska M. Influence of HIP pressure on tensile      doi: 10.1016/j.matlet.2010.05.039
               properties of a 14Cr ODS ferritic steel. Fusion Eng Design.   22.  Amini R, Alijani F, Ghaffari M, Alizadeh M, Okyay AK.
               2014;89(2):137-141.                                Formation of B19′, B2, and amorphous phases during
                                                                  mechano-synthesis of nanocrystalline NiTi intermetallics.
               doi: 10.1016/j.fusengdes.2014.01.052
                                                                  Powder Technol. 2014;253:797-802.
            12.  Deng L, Luo J ru, Tu J, et al. Achieving excellent mechanical
               properties of ODS steel by Y2O3 addition. Mater Sci Eng A.      doi: 10.1016/j.powtec.2013.12.029
               2023;872:145008.                                23.  Smith TM, Thompson AC, Gabb TP, Bowman CL,
                                                                  Kantzos CA. Efficient production of a high-performance
               doi: 10.1016/j.msea.2023.145008
                                                                  dispersion strengthened, multi-principal element alloy. Sci
            13.  Shi W, Yu L, Liu C,  et al. Evolution of Y2O3 precipitates   Rep. 2020;10(1):9663.
               in ODS-316  L steel during reactive-inspired ball-milling
               and spark plasma sintering processes.  Powder Technol.      doi: 10.1038/s41598-020-66436-5
               2022;398:117072.                                24.  Ozerskoi N, Volokitina E, Razumov  N, Popovich A.
                                                                  Mechanical properties of ODS steel fabrication by
               doi: 10.1016/j.powtec.2021.117072
                                                                  mechanical alloying and sparking plasma sintering.  AIP
            14.  Macía E, García-Junceda A, Serrano M, Hong SJ, Campos   Conf Proc. 2024;3154(1):020029.
               M.  Effect  of  mechanical  alloying  on  the  microstructural
               evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition      doi: 10.1063/5.0201304
               processed by Spark Plasma Sintering (SPS).  Nucl Eng   25.  Jia H, Zhou Z, Li S. A new strategy for additive manufacturing
               Technol. 2021;53(8):2582-2590.                     ODS steel using Y-containing gas atomized powder. Mater
                                                                  Character. 2022;187:111876.
               doi: 10.1016/j.net.2021.02.002
                                                                  doi: 10.1016/j.matchar.2022.111876
            15.  Zhao M, Zhang P, Xu J, et al. Optimization of microstructure
               and tensile properties for a 13Cr-1W ODS steel prepared by   26.  Cakmak O, Yeom H, Cho JW.  In-situ synthesis of Yttria-
               mechanical alloying and spark plasma sintering using pre-  based precipitates and their effects on Fe12Cr6Al in laser
               alloyed powder. Mater Character. 2024;207:113581.  powder bed fusion. J Mater Res Technol. 2024;33:6714-6721.
               doi: 10.1016/j.matchar.2023.113581                 doi: 10.1016/j.jmrt.2024.11.059


            Volume 4 Issue 1 (2025)                         10                        doi: 10.36922/MSAM025060004
   82   83   84   85   86   87   88   89   90   91   92