Page 88 - MSAM-4-1
P. 88
Materials Science in Additive Manufacturing SLM of ODS steel: Process and properties
27. Autones L, Aubry P, Ribis J, Leguy H, Legris A, De Carlan Y. J Alloys Compd. 2019;791:121-133.
Assessment of ferritic ODS steels obtained by laser additive doi: 10.1016/j.jallcom.2019.03.284
manufacturing. Materials (Basel). 2023;16(6):2397.
35. Spiridonova KV, Litovchenko IYu, Polekhina NA, et al.
doi: 10.3390/ma16062397
Structural-phase transformations of 12% chromium ferritic-
28. Zhai W, Zhou W, Nai SML. Effect of interface wettability on martensitic steel EP-823. Izv Ferrous Metall. 2023;66(6):725-732.
additively manufactured metal matrix composites: A case doi: 10.17073/0368-0797-2023-6-725-732
study of 316L-Y2O3 oxide dispersion-strengthened steel.
Metals. 2024;14(2):170. 36. Wang Z, Liu Z, Ma J, et al. Investigation on microstructure
and mechanical properties of electron-beam-welded joint
doi: 10.3390/met14020170
of reduced activation ferritic/martensitic steel fabricated by
29. Jia H, Sun H, Wang H, Wu Y, Wang H. Scanning strategy selective laser melting. Mater Sci Eng A. 2023;881:145333.
in selective laser melting (SLM): A review. Int J Adv Manuf doi: 10.1016/j.msea.2023.145333
Technol. 2021;113(9):2413-2435.
37. Seede R, Zhang B, Whitt A, et al. Effect of heat treatments
doi: 10.1007/s00170-021-06810-3
on the microstructure and mechanical properties of an
30. Polekhina NA, Litovchenko IY, Tyumentsev AN, ultra-high strength martensitic steel fabricated via laser
Astafurova ЕG, Chernov VM, Leontyeva-Smirnova MV. powder bed fusion additive manufacturing. Addit Manuf.
The effect of tempering temperature on the features of phase 2021;47:102255.
transformations in the ferritic-martensitic steel EK-181. doi: 10.1016/j.addma.2021.102255
J Nucl Mater. 2014;455(1-3):496-499.
38. Zaitceva M, Erutin D, Popovich A, Sufiiarov V. Effect of pre-
doi: 10.1016/j.jnucmat.2014.08.012
heating during selective laser melting of chromium steel on
31. Qin SS. Influence of Preheating Temperature on Microstructure structure and properties. Global Energy. 2024;30(3):43-51.
Evolution and Hardness of High‐Speed Steel AISI M50 doi: 10.18721/JEST.30303
Processed by Laser Powder Bed Fusion - Qin - 2023 - Steel
Research International. Wiley Online Library. https:// 39. Ghayoor M, Mirzababaei S, Lee K, et al. Strengthening of
onlinelibrary.wiley.com/doi/10.1002/srin.202200784 [Last 304L Stainless Steel by Addition of Yttrium Oxide and
accessed on 2025 Jan 29]. Grain Refinement during Selective Laser Melting. In: Solid
Freeform Fabrication 2019: Proceedings of the 30 Annual
th
32. Qin S, Saewe J, Kunz J, et al. Influence of preheating International Solid Freeform Fabrication Symposium-An
temperature on microstructure evolution and hardness of Additive Manufacturing Conference; 2019. p. 967-976.
high‐speed steel AISI M50 processed by laser powder bed
fusion. Steel Res Int. 2023;94(6):2200784. 40. Sagaradze VV, Kochetkova TN, Kataeva NV, et al. Structure
and creep of Russian reactor steels with a BCC structure.
doi: 10.1002/srin.202200784
Phys Metals Metallogr. 2017;118(5):494-506.
33. Masuo H, Tanaka Y, Morokoshi S, et al. Effects of defects, doi: 10.1134/S0031918X17050131
surface roughness, and HIP on fatigue strength of Ti-6Al-4V
manufactured by additive manufacturing. Proc Struct Integr. 41. Votinin SN, Balashov VD, Krylov EA, et al. Effect of Neutron
2017;7:19-26. Irradiation on High-Temperature Properties of Stainless
Steels type Cr13 (Влияние Нейтронного Облучения на
doi: 10.1016/j.prostr.2017.11.055
Высокотемпературные Свойства Нержавеющих Сталей
34. Shi Y, Lu Z, Xu H, Xie R, Ren Y, Yang G. Microstructure Типа Х13). In: Proceedings of the Scientific and Technical
characterization and mechanical properties of laser additive Conference “Nuclear Energy: Fuel Cycles, Radiation Materials
manufactured oxide dispersion strengthened Fe-9Cr alloy. Science”, Ulyanovsk, October 5-10; 1971. p. 351-379.
Volume 4 Issue 1 (2025) 11 doi: 10.36922/MSAM025060004

