Page 88 - MSAM-4-1
P. 88

Materials Science in Additive Manufacturing                        SLM of ODS steel: Process and properties



            27.  Autones L, Aubry P, Ribis J, Leguy H, Legris A, De Carlan Y.   J Alloys Compd. 2019;791:121-133.
               Assessment of ferritic ODS steels obtained by laser additive      doi: 10.1016/j.jallcom.2019.03.284
               manufacturing. Materials (Basel). 2023;16(6):2397.
                                                               35.  Spiridonova KV, Litovchenko IYu, Polekhina NA,  et al.
               doi: 10.3390/ma16062397
                                                                  Structural-phase transformations of 12% chromium ferritic-
            28.  Zhai W, Zhou W, Nai SML. Effect of interface wettability on   martensitic steel EP-823. Izv Ferrous Metall. 2023;66(6):725-732.
               additively manufactured metal matrix composites: A  case      doi: 10.17073/0368-0797-2023-6-725-732
               study of 316L-Y2O3 oxide dispersion-strengthened steel.
               Metals. 2024;14(2):170.                         36.  Wang Z, Liu Z, Ma J, et al. Investigation on microstructure
                                                                  and mechanical properties of electron-beam-welded joint
               doi: 10.3390/met14020170
                                                                  of reduced activation ferritic/martensitic steel fabricated by
            29.  Jia H, Sun H, Wang H, Wu Y, Wang H. Scanning strategy   selective laser melting. Mater Sci Eng A. 2023;881:145333.
               in selective laser melting (SLM): A review. Int J Adv Manuf      doi: 10.1016/j.msea.2023.145333
               Technol. 2021;113(9):2413-2435.
                                                               37.  Seede R, Zhang B, Whitt A, et al. Effect of heat treatments
               doi: 10.1007/s00170-021-06810-3
                                                                  on the microstructure and mechanical properties of an
            30.  Polekhina  NA,  Litovchenko  IY,  Tyumentsev  AN,   ultra-high strength martensitic steel fabricated via laser
               Astafurova  ЕG, Chernov VM, Leontyeva-Smirnova MV.   powder  bed  fusion  additive  manufacturing.  Addit Manuf.
               The effect of tempering temperature on the features of phase   2021;47:102255.
               transformations in the ferritic-martensitic steel EK-181.      doi: 10.1016/j.addma.2021.102255
               J Nucl Mater. 2014;455(1-3):496-499.
                                                               38.  Zaitceva M, Erutin D, Popovich A, Sufiiarov V. Effect of pre-
               doi: 10.1016/j.jnucmat.2014.08.012
                                                                  heating during selective laser melting of chromium steel on
            31.  Qin SS. Influence of Preheating Temperature on Microstructure   structure and properties. Global Energy. 2024;30(3):43-51.
               Evolution and Hardness of High‐Speed Steel AISI M50      doi: 10.18721/JEST.30303
               Processed by Laser Powder Bed Fusion - Qin - 2023 - Steel
               Research International. Wiley Online Library. https://  39.  Ghayoor M, Mirzababaei S, Lee K, et al. Strengthening of
               onlinelibrary.wiley.com/doi/10.1002/srin.202200784 [Last   304L Stainless Steel by Addition of Yttrium Oxide and
               accessed on 2025 Jan 29].                          Grain Refinement during Selective Laser Melting. In: Solid
                                                                  Freeform Fabrication 2019: Proceedings of the 30   Annual
                                                                                                      th
            32.  Qin S, Saewe J, Kunz J,  et al. Influence of preheating   International Solid Freeform Fabrication Symposium-An
               temperature on microstructure evolution and hardness of   Additive Manufacturing Conference; 2019. p. 967-976.
               high‐speed steel AISI M50 processed by laser powder bed
               fusion. Steel Res Int. 2023;94(6):2200784.      40.  Sagaradze VV, Kochetkova TN, Kataeva NV, et al. Structure
                                                                  and creep of Russian reactor steels with a BCC structure.
               doi: 10.1002/srin.202200784
                                                                  Phys Metals Metallogr. 2017;118(5):494-506.
            33.  Masuo H, Tanaka Y, Morokoshi S, et al. Effects of defects,      doi: 10.1134/S0031918X17050131
               surface roughness, and HIP on fatigue strength of Ti-6Al-4V
               manufactured by additive manufacturing. Proc Struct Integr.   41.  Votinin SN, Balashov VD, Krylov EA, et al. Effect of Neutron
               2017;7:19-26.                                      Irradiation on High-Temperature Properties of Stainless
                                                                  Steels type  Cr13 (Влияние Нейтронного Облучения на
               doi: 10.1016/j.prostr.2017.11.055
                                                                  Высокотемпературные Свойства Нержавеющих Сталей
            34.  Shi Y, Lu Z, Xu H, Xie R, Ren Y, Yang G. Microstructure   Типа Х13). In:  Proceedings of the Scientific and Technical
               characterization and mechanical properties of laser additive   Conference “Nuclear Energy: Fuel Cycles, Radiation Materials
               manufactured oxide dispersion strengthened Fe-9Cr alloy.   Science”, Ulyanovsk, October 5-10; 1971. p. 351-379.




















            Volume 4 Issue 1 (2025)                         11                        doi: 10.36922/MSAM025060004
   83   84   85   86   87   88   89   90   91   92   93