Page 152 - MSAM-4-2
P. 152

Materials Science in Additive Manufacturing                    Bi-modal powder spreading behavior of ceramics



               metal powders used for additive manufacturing: Technique   in binder jetting of metals. In: International Solid Freeform
               description and application to two gas-atomized and plasma-  Fabrication Symposium. University of Texas at Austin;
               atomized Ti64 powders. Addit Manuf. 2020;31:100965.  2015. Available from: https://repositories.lib.utexas.edu/
                                                                  handle/2152/89376 [Last accessed on 2022 Oct 19].
               doi: 10.1016/j.addma.2019.100965
                                                               27.  Yao D, Wang J, Li M, et al. Segregation of 316L stainless steel
            17.  Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y,
               Brabazon D. Influences of powder morphology and spreading   powder during spreading in selective laser melting based
               parameters on the powder bed topography uniformity in   additive manufacturing. Powder Technol. 2022;397:117096.
               powder bed fusion metal additive manufacturing.  Addit      doi: 10.1016/J.POWTEC.2021.117096
               Manuf. 2021;38:101807.
                                                               28.  Moghadasi M, Miao G, Li M, Pei Z, Ma C. Combining
               doi: 10.1016/j.addma.2020.101807                   powder bed compaction and nanopowders to improve
                                                                  density in ceramic binder jetting additive manufacturing.
            18.  Yim  S,  Bian  H,  Aoyagi  K,  Yamanaka  K,  Chiba  A.  Effect
               of powder morphology on flowability and spreading   Ceram Int. 2021;47(24):35348-35355.
               behavior in powder bed fusion additive manufacturing      doi: 10.1016/J.CERAMINT.2021.09.077
               process: A  particle-scale modeling study.  Addit Manuf.   29.  Miao G, Moghadasi M, Du W, Pei Z, Ma C. Experimental
               2023;72:103612.
                                                                  investigation on the effect of roller traverse and rotation
               doi: 10.1016/j.addma.2023.103612                   speeds on ceramic binder jetting additive manufacturing.
                                                                  J Manuf Process. 2022;79:887-894.
            19.  Anderson IE, White EMH, Dehoff R. Feedstock powder
               processing research needs for additive manufacturing      doi: 10.1016/J.JMAPRO.2022.05.039
               development. Curr Opin Solid State Mater Sci. 2018;22(1):8-15.
                                                               30.  Li M, Wei X, Pei Z, Ma C. Binder jetting additive
               doi: 10.1016/j.cossms.2018.01.002                  manufacturing: Observations of compaction-induced
                                                                  powder bed surface defects. Manuf Lett. 2021;28:50-53.
            20.  Freeman R. Measuring the flow properties of consolidated,
               conditioned and aerated powders  -A comparative study      doi: 10.1016/j.mfglet.2021.04.003
               using a powder rheometer and a rotational shear cell.   31.  Porter Q, Li M, Pei Z, Ma C. Binder jetting additive
               Powder Technol. 2007;174(1-2):25-33.
                                                                  manufacturing: The effect of feed region density on resultant
               doi: 10.1016/j.powtec.2006.10.016                  densities. J Manuf Sci Eng. 2022;144(9):1140557.
            21.  Chan LCY, Page NW. Particle fractal and load effects on      doi: 10.1115/1.4054453/1140557
               internal friction in powders.  Powder Technol. 1997;90(3):   32.  Li M, Miao G, Moghadasi M, Pei Z, Ma C. Ceramic binder
               259-266.
                                                                  jetting  additive manufacturing:  Relationships  among
               doi: 10.1016/S0032-5910(96)03228-7                 powder  properties,  feed  region  density,  and  powder  bed
                                                                  density. Ceram Int. 2021;47(17):25147-25151.
            22.  Jange CG, Ambrose RPK. Effect of surface compositional
               difference on powder flow properties.  Powder  Technol.      doi: 10.1016/j.ceramint.2021.05.175
               2019;344:363-372.
                                                               33.  Chen H, Chen Y, Liu Y, Wei Q, Shi Y, Yan W. Packing
               doi: 10.1016/j.powtec.2018.12.027                  quality of powder layer during counter-rolling-type powder
                                                                  spreading process in additive manufacturing.  Int J Mach
            23.  Qu Z, Zhang P, Lai Y, Wang Q, Song J, Liang S. Influence
               of powder particle size on the microstructure of a hot   Tools Manuf. 2020;153:103553.
               isostatically pressed superalloy.  J  Mater Res Technol.      doi: 10.1016/J.IJMACHTOOLS.2020.103553
               2022;16:1283-1292.
                                                               34.  Haeri S. Optimisation of blade type spreaders for powder
               doi: 10.1016/j.jmrt.2021.12.081                    bed preparation in Additive Manufacturing using DEM
                                                                  simulations. Powder Technol. 2017;321:94-104.
            24.  Diener S, Zocca A, Günster J. Literature review: Methods for
               achieving high powder bed densities in ceramic powder bed      doi: 10.1016/J.POWTEC.2017.08.011
               based additive manufacturing. Open Ceram. 2021;8:100191.
                                                               35.  Haeri S, Wang Y, Ghita O, Sun J. Discrete element simulation
               doi: 10.1016/J.OCERAM.2021.100191                  and experimental study of powder spreading process in
                                                                  additive manufacturing. Powder Technol. 2017;306:45-54.
            25.  Wang J, Jeong SG, Kim ES, Kim HS, Lee BJ. Material-agnostic
               machine learning approach enables high relative density in      doi: 10.1016/J.POWTEC.2016.11.002
               powder bed fusion products. Nat Commun. 2023;14(1):1-12.
                                                               36.  Wang L, Yu A, Li E, Shen H, Zhou Z. Effects of spreader
               doi: 10.1038/s41467-023-42319-x                    geometry  on  powder  spreading  process  in  powder  bed
                                                                  additive manufacturing. Powder Technol. 2021;384:211-222.
            26.  Bai Y, Wagner G, Williams CB. Effect of bimodal powder
               mixture on powder packing density and sintered density      doi: 10.1016/J.POWTEC.2021.02.022


            Volume 4 Issue 2 (2025)                         13                         doi: 10.36922/MSAM02510016
   147   148   149   150   151   152   153   154   155   156   157