Page 152 - MSAM-4-2
P. 152
Materials Science in Additive Manufacturing Bi-modal powder spreading behavior of ceramics
metal powders used for additive manufacturing: Technique in binder jetting of metals. In: International Solid Freeform
description and application to two gas-atomized and plasma- Fabrication Symposium. University of Texas at Austin;
atomized Ti64 powders. Addit Manuf. 2020;31:100965. 2015. Available from: https://repositories.lib.utexas.edu/
handle/2152/89376 [Last accessed on 2022 Oct 19].
doi: 10.1016/j.addma.2019.100965
27. Yao D, Wang J, Li M, et al. Segregation of 316L stainless steel
17. Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y,
Brabazon D. Influences of powder morphology and spreading powder during spreading in selective laser melting based
parameters on the powder bed topography uniformity in additive manufacturing. Powder Technol. 2022;397:117096.
powder bed fusion metal additive manufacturing. Addit doi: 10.1016/J.POWTEC.2021.117096
Manuf. 2021;38:101807.
28. Moghadasi M, Miao G, Li M, Pei Z, Ma C. Combining
doi: 10.1016/j.addma.2020.101807 powder bed compaction and nanopowders to improve
density in ceramic binder jetting additive manufacturing.
18. Yim S, Bian H, Aoyagi K, Yamanaka K, Chiba A. Effect
of powder morphology on flowability and spreading Ceram Int. 2021;47(24):35348-35355.
behavior in powder bed fusion additive manufacturing doi: 10.1016/J.CERAMINT.2021.09.077
process: A particle-scale modeling study. Addit Manuf. 29. Miao G, Moghadasi M, Du W, Pei Z, Ma C. Experimental
2023;72:103612.
investigation on the effect of roller traverse and rotation
doi: 10.1016/j.addma.2023.103612 speeds on ceramic binder jetting additive manufacturing.
J Manuf Process. 2022;79:887-894.
19. Anderson IE, White EMH, Dehoff R. Feedstock powder
processing research needs for additive manufacturing doi: 10.1016/J.JMAPRO.2022.05.039
development. Curr Opin Solid State Mater Sci. 2018;22(1):8-15.
30. Li M, Wei X, Pei Z, Ma C. Binder jetting additive
doi: 10.1016/j.cossms.2018.01.002 manufacturing: Observations of compaction-induced
powder bed surface defects. Manuf Lett. 2021;28:50-53.
20. Freeman R. Measuring the flow properties of consolidated,
conditioned and aerated powders -A comparative study doi: 10.1016/j.mfglet.2021.04.003
using a powder rheometer and a rotational shear cell. 31. Porter Q, Li M, Pei Z, Ma C. Binder jetting additive
Powder Technol. 2007;174(1-2):25-33.
manufacturing: The effect of feed region density on resultant
doi: 10.1016/j.powtec.2006.10.016 densities. J Manuf Sci Eng. 2022;144(9):1140557.
21. Chan LCY, Page NW. Particle fractal and load effects on doi: 10.1115/1.4054453/1140557
internal friction in powders. Powder Technol. 1997;90(3): 32. Li M, Miao G, Moghadasi M, Pei Z, Ma C. Ceramic binder
259-266.
jetting additive manufacturing: Relationships among
doi: 10.1016/S0032-5910(96)03228-7 powder properties, feed region density, and powder bed
density. Ceram Int. 2021;47(17):25147-25151.
22. Jange CG, Ambrose RPK. Effect of surface compositional
difference on powder flow properties. Powder Technol. doi: 10.1016/j.ceramint.2021.05.175
2019;344:363-372.
33. Chen H, Chen Y, Liu Y, Wei Q, Shi Y, Yan W. Packing
doi: 10.1016/j.powtec.2018.12.027 quality of powder layer during counter-rolling-type powder
spreading process in additive manufacturing. Int J Mach
23. Qu Z, Zhang P, Lai Y, Wang Q, Song J, Liang S. Influence
of powder particle size on the microstructure of a hot Tools Manuf. 2020;153:103553.
isostatically pressed superalloy. J Mater Res Technol. doi: 10.1016/J.IJMACHTOOLS.2020.103553
2022;16:1283-1292.
34. Haeri S. Optimisation of blade type spreaders for powder
doi: 10.1016/j.jmrt.2021.12.081 bed preparation in Additive Manufacturing using DEM
simulations. Powder Technol. 2017;321:94-104.
24. Diener S, Zocca A, Günster J. Literature review: Methods for
achieving high powder bed densities in ceramic powder bed doi: 10.1016/J.POWTEC.2017.08.011
based additive manufacturing. Open Ceram. 2021;8:100191.
35. Haeri S, Wang Y, Ghita O, Sun J. Discrete element simulation
doi: 10.1016/J.OCERAM.2021.100191 and experimental study of powder spreading process in
additive manufacturing. Powder Technol. 2017;306:45-54.
25. Wang J, Jeong SG, Kim ES, Kim HS, Lee BJ. Material-agnostic
machine learning approach enables high relative density in doi: 10.1016/J.POWTEC.2016.11.002
powder bed fusion products. Nat Commun. 2023;14(1):1-12.
36. Wang L, Yu A, Li E, Shen H, Zhou Z. Effects of spreader
doi: 10.1038/s41467-023-42319-x geometry on powder spreading process in powder bed
additive manufacturing. Powder Technol. 2021;384:211-222.
26. Bai Y, Wagner G, Williams CB. Effect of bimodal powder
mixture on powder packing density and sintered density doi: 10.1016/J.POWTEC.2021.02.022
Volume 4 Issue 2 (2025) 13 doi: 10.36922/MSAM02510016

